Sungeun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Achieving performance and longevity with butane-operated low-temperature solid oxide fuel cells using low-cost Cu and CeO ₂ catalysts. Journal of Materials Chemistry A, 2022, 10, 2460-2473.	10.3	12
2	Highly efficient and robust Pt ensembles on mesoporous alumina for reversible H2 charge and release of commercial benzyltoluene molecules. Applied Catalysis B: Environmental, 2022, 305, 121061.	20.2	16
3	Improved strontium segregation suppression of lanthanum strontium cobalt oxide cathode via chemical etching and atomic layer deposition. International Journal of Energy Research, 2022, 46, 12467-12475.	4.5	2
4	The proton uptake process in double perovskite triple ionic-electronic conducting oxides for protonic ceramic cells. Journal of Materials Chemistry A, 2022, 10, 16127-16136.	10.3	10
5	Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. Journal of Catalysis, 2021, 393, 313-323.	6.2	43
6	A nanoarchitectured cermet composite with extremely low Ni content for stable high-performance solid oxide fuel cells. Acta Materialia, 2021, 206, 116580.	7.9	15
7	Roles of Polymerized Anionic Clusters Stimulating for Hydrolysis Deterioration in Li ₇ P ₃ S ₁₁ . Journal of Physical Chemistry C, 2021, 125, 19509-19516.	3.1	10
8	Naturally diffused sintering aid for highly conductive bilayer electrolytes in solid oxide cells. Science Advances, 2021, 7, eabj8590.	10.3	16
9	Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500–600 ðC. Applied Catalysis B: Environmental, 2020, 263, 118349.	20.2	27
10	Robust solid-state interface with a deformable glass interlayer in sulfide-based all-solid-state batteries. Solid State Ionics, 2020, 346, 115217.	2.7	11
11	Readily Constructed Glass Piston Pump for Gas Recirculation. ACS Omega, 2020, 5, 16455-16459.	3.5	5
12	Improved electrochemical performance and durability of butaneâ€operating lowâ€ŧemperature solid oxide fuel cell through palladium infiltration. International Journal of Energy Research, 2020, 44, 9995-10007.	4.5	17
13	Highly active and thermally stable single-atom catalysts for high-temperature electrochemical devices. Energy and Environmental Science, 2020, 13, 4903-4920.	30.8	35
14	Protonic ceramic electrolysis cells for fuel production: a brief review. Journal of the Korean Ceramic Society, 2020, 57, 480-494.	2.3	34
15	Promotion of Pt/CeO ₂ catalyst by hydrogen treatment for low-temperature CO oxidation. RSC Advances, 2019, 9, 27002-27012.	3.6	53
16	Degradation Mechanism of Oxygen Electrode Under Fuel-Cell and Electrolysis Mode Operations. ECS Transactions, 2019, 91, 681-685.	0.5	2
17	A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 2019, 570, 504-508.	27.8	1,006
18	A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques. ACS Catalysis, 2019, 9, 5797-5802.	11.2	97

SUNGEUN YANG

#	Article	IF	CITATIONS
19	Decentralized Electrochemical Production of H2O2: A Focus on Catalysis and Single-Atom Catalysts. ECS Meeting Abstracts, 2019, , .	0.0	0
20	Carbon catalysts for electrochemical hydrogen peroxide production in acidic media. Electrochimica Acta, 2018, 272, 192-202.	5.2	63
21	Toward the Decentralized Electrochemical Production of H ₂ O ₂ : A Focus on the Catalysis. ACS Catalysis, 2018, 8, 4064-4081.	11.2	663
22	Examining the rudimentary steps of the oxygen reduction reaction on single-atomic Pt using Ti-based non-oxide supports. Journal of Industrial and Engineering Chemistry, 2018, 58, 208-215.	5.8	14
23	Highly Durable Platinum Singleâ€Atom Alloy Catalyst for Electrochemical Reactions. Advanced Energy Materials, 2018, 8, 1701476.	19.5	152
24	Gram-scale synthesis of highly active and durable octahedral PtNi nanoparticle catalysts for proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 2018, 225, 530-537.	20.2	63
25	Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction. ACS Catalysis, 2017, 7, 1301-1307.	11.2	363
26	Selective hydrogenation of furanic aldehydes using Ni nanoparticle catalysts capped with organic molecules. Journal of Catalysis, 2016, 344, 609-615.	6.2	39
27	Singleâ€Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. Angewandte Chemie, 2016, 128, 2098-2102.	2.0	94
28	Singleâ€Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. Angewandte Chemie - International Edition, 2016, 55, 2058-2062.	13.8	708
29	Platinum–titanium intermetallic nanoparticle catalysts for oxygen reduction reaction with enhanced activity and durability. Electrochemistry Communications, 2016, 66, 66-70.	4.7	23
30	Shaped Ir–Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction. Chemical Communications, 2016, 52, 5641-5644.	4.1	78
31	Production of acrylic acid from biomass-derived allyl alcohol by selective oxidation using Au/ceria catalysts. Catalysis Science and Technology, 2016, 6, 3616-3622.	4.1	19
32	Electronic structure modification of platinum on titanium nitride resulting in enhanced catalytic activity and durability for oxygen reduction and formic acid oxidation. Applied Catalysis B: Environmental, 2015, 174-175, 35-42.	20.2	63
33	One-pot synthesis of Pd@PdPt core–shell nanocubes on carbon supports. RSC Advances, 2014, 4, 63677-63680.	3.6	9
34	Atomically Dispersed Platinum on Gold Nano-Octahedra with High Catalytic Activity on Formic Acid Oxidation. ACS Catalysis, 2013, 3, 437-443.	11.2	125
35	Synthesis of biolubricants using sulfated zirconia catalysts. Applied Catalysis A: General, 2013, 455, 164-171.	4.3	54
36	Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes. Chemical Communications, 2012, 48, 9501.	4.1	84

SUNGEUN YANG

#	Article	IF	CITATIONS
37	In situ shaping of Pt nanoparticles directly overgrown on carbon supports. Chemical Communications, 2012, 48, 6396.	4.1	37
38	A distinct platinum growth mode on shaped gold nanocrystals. Chemical Communications, 2012, 48, 257-259.	4.1	15
39	Shape-Controlled Nanocrystals for Catalytic Applications. Catalysis Surveys From Asia, 2012, 16, 14-27.	2.6	42
40	Exploration of a Ce _{0.65} Zr _{0.25} Pr _{0.1} O _{2â~'δ} -Based Electrocatalyst That Exhibits Rapid Performance Deterioration Despite Its High Oxygen Storage Capability. ACS Applied Energy Materials, 0, , .	5.1	1