Meyya Meyyappan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013344/publications.pdf

Version: 2024-02-01

414 papers

24,665 citations

76 h-index 9861 141 g-index

420 all docs

420 docs citations

420 times ranked 23792 citing authors

#	Article	IF	CITATIONS
1	(Invited, Digital Presentation) Development of Multiplex Electrode Array Sensors for Proteases Activity Profiling Toward Cancer Diagnosis. ECS Meeting Abstracts, 2022, MA2022-01, 2201-2201.	0.0	O
2	Printable Gel Polymer Electrolytes for Solid-State Printed Supercapacitors. Materials, 2021, 14, 316.	2.9	8
3	A nanoscale vacuum field emission gated diode with an umbrella cathode. Nanoscale Advances, 2021, 3, 1725-1729.	4.6	12
4	Methodologies for Fabricating Flexible Supercapacitors. Micromachines, 2021, 12, 163.	2.9	14
5	Surround Gate Transistor With Epitaxially Grown Si Pillar and Simulation Study on Soft Error and Rowhammer Tolerance for DRAM. IEEE Transactions on Electron Devices, 2021, 68, 529-534.	3.0	4
6	Single Event Hard Error due to Terrestrial Radiation. , 2021, , .		4
7	pH Modeling to Predict SWCNT–COOH Gas Sensor Response to Multiple Target Gases. Journal of Physical Chemistry C, 2021, 125, 9356-9363.	3.1	6
8	Machine Learning Approach for Prediction of Point Defect Effect in FinFET. IEEE Transactions on Device and Materials Reliability, 2021, 21, 252-257.	2.0	8
9	Total ionizing dose effects on nanosheet and nanowire field effect transistors. Microelectronics Reliability, 2021, 121, 114145.	1.7	3
10	Effect of 150 MeV protons on carbon nanotubes for fabrication of a radiation detector. Nanotechnology, 2021, 32, 355501.	2.6	1
11	Quantitative Detection of Cathepsin B Activity in Neutral pH Buffers Using Gold Microelectrode Arrays: Toward Direct Multiplex Analyses of Extracellular Proteases in Human Serum. ACS Sensors, 2021, 6, 3621-3631.	7.8	5
12	Complementary Vacuum Field Emission Transistor. IEEE Transactions on Electron Devices, 2021, 68, 5244-5249.	3.0	5
13	Trends in Carbon, Oxygen, and Nitrogen Core in the X-ray Absorption Spectroscopy of Carbon Nanomaterials: A Guide for the Perplexed. Journal of Physical Chemistry C, 2021, 125, 973-988.	3.1	30
14	Integrating Carbon Nanomaterials with Metals for Bio-sensing Applications. Molecular Neurobiology, 2020, 57, 179-190.	4.0	21
15	Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. Carbon, 2020, 159, 586-597.	10.3	44
16	Output density quantification of electricity generation by flowing deionized water on graphene. Applied Physics Letters, 2020, 117, .	3.3	8
17	Atmospheric Pressure Plasma Printing of Nanomaterials for <i>loT</i> Applications. IEEE Open Journal of Nanotechnology, 2020, 1, 47-56.	2.0	12
18	Hexagonal Boron Nitride for Sulfur Corrosion Inhibition. ACS Nano, 2020, 14, 14809-14819.	14.6	56

#	Article	IF	CITATIONS
19	The Impact of a Single Displacement Defect on Tunneling Field-Effect Transistors. IEEE Transactions on Electron Devices, 2020, 67, 4765-4769.	3.0	8
20	Printing of a Passivation Layer for the Protection of Printed Supercapacitors. ACS Applied Electronic Materials, 2020, 2, 3643-3649.	4.3	2
21	Electrical and Data-Retention Characteristics of Two-Terminal Thyristor Random Access Memory. IEEE Open Journal of Nanotechnology, 2020, 1, 163-169.	2.0	2
22	Nanoscale Complementary Vacuum Field Emission Transistor. ACS Applied Nano Materials, 2020, 3, 11481-11488.	5.0	20
23	Thermal conductivity reduction by scallop shaped surface modulation in silicon nanowires. Applied Physics Letters, 2020, 116, .	3.3	5
24	Simultaneous, multiplex quantification of protease activities using a gold microelectrode array. Biosensors and Bioelectronics, 2020, 165, 112330.	10.1	10
25	All 3D-Printed Flexible ZnO UV Photodetector on an Ultraflat Substrate. ACS Sensors, 2020, 5, 1028-1032.	7.8	34
26	Carbon Nanotube-Based Flexible UV Sensor on Various Substrates. IEEE Sensors Journal, 2020, 20, 8429-8436.	4.7	6
27	Electrochemical Sensors in Space Missions. Electrochemical Society Interface, 2020, 29, 53-57.	0.4	1
28	High-Voltage Drain-Extended FinFET With a High-\${k}\$ Dielectric Field Plate. IEEE Transactions on Electron Devices, 2020, 67, 1077-1084.	3.0	7
29	Onâ€Demand Printing of Wearable Thermotherapy Pad. Advanced Healthcare Materials, 2020, 9, e1901575.	7.6	21
30	Solar Cell Using Hourglass-Shaped Silicon Nanowires for Increased Light-Trapping Path. IEEE Journal of Photovoltaics, 2020, 10, 475-479.	2.5	13
31	Transformable Junctionless Transistor (T-JLT). IEEE Transactions on Electron Devices, 2020, 67, 2639-2644.	3.0	1
32	All-Printed In-Plane Supercapacitors by Sequential Additive Manufacturing Process. ACS Applied Energy Materials, 2020, 3, 4965-4973.	5.1	32
33	Buffer solution optimization for accurate fluoride ion detection in tap water. Journal of Electroanalytical Chemistry, 2020, 858, 113837.	3.8	10
34	Enhanced thermoelectric properties of cobalt silicide-silicon heterostructured nanowires. IEEE Nanotechnology Magazine, 2020, , 1-1.	2.0	2
35	Rapid prototyping of microwave metasurfaces by ink-jet printing on polyester (PET) transparencies. Flexible and Printed Electronics, 2020, 5, 045003.	2.7	3
36	Corrections to "Solar Cell Using Hourglass-Shaped Silicon Nanowires for Increased Light-Trapping Path―[Mar 20 475-479]. IEEE Journal of Photovoltaics, 2020, 10, 1508-1508.	2.5	0

3

#	Article	IF	Citations
37	Array of chemiresistors for single input multiple output (SIMO) variation-tolerant all printed gas sensor. Sensors and Actuators B: Chemical, 2019, 299, 126971.	7.8	O
38	Weakly Tapered Silicon Nanopillar Resonators with Spatially Well-Separated Whispering Gallery Modes for Si-Based Lasers. ACS Applied Nano Materials, 2019, 2, 4852-4858.	5.0	4
39	Annealing effect on UV-illuminated recovery in gas response of graphene-based NO ₂ sensors. RSC Advances, 2019, 9, 23343-23351.	3.6	30
40	Electrically-generated memristor based on inkjet printed silver nanoparticles. Nanoscale Advances, 2019, 1, 2990-2998.	4.6	22
41	Whispering gallery modes enhance the near-infrared photoresponse of hourglass-shaped silicon nanowire photodiodes. Nature Electronics, 2019, 2, 572-579.	26.0	28
42	Nanoscale vacuum channel transistors fabricated on silicon carbide wafers. Nature Electronics, 2019, 2, 405-411.	26.0	73
43	Carboxylated Single-Walled Carbon Nanotube Sensors with Varying pH for the Detection of Ammonia and Carbon Dioxide Using an Artificial Neural Network. ACS Applied Nano Materials, 2019, 2, 6445-6451.	5.0	20
44	Building Brain-Inspired Logic Circuits from Dynamically Switchable Transition-Metal Oxides. Trends in Chemistry, 2019, 1, 711-726.	8.5	39
45	Physically Unclonable Function by an All-Printed Carbon Nanotube Network. ACS Applied Electronic Materials, 2019, 1, 1162-1168.	4.3	22
46	Caution: Abnormal Variability Due to Terrestrial Cosmic Rays in Scaled-Down FinFETs. IEEE Transactions on Electron Devices, 2019, 66, 1887-1891.	3.0	17
47	Carbon Nanotube Based Î ³ Ray Detector. ACS Sensors, 2019, 4, 1097-1102.	7.8	7
48	Plasma jet based <i>in situ</i> reduction of copper oxide in direct write printing. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	1.2	14
49	Electrochemical Activity Assay for Protease Analysis Using Carbon Nanofiber Nanoelectrode Arrays. Analytical Chemistry, 2019, 91, 3971-3979.	6.5	25
50	Soft Error in Saddle Fin Based DRAM. IEEE Electron Device Letters, 2019, 40, 494-497.	3.9	11
51	Interface Engineering to Enhance the Photoresponse of Core-Shell Structure Silicon Nanowire Photodetectors. , 2019 , , .		1
52	Thermal Conductivity of Rough Silicon Nanowires with Silicide Layer., 2019,,.		1
53	Design Guidelines for High Sensitivity ZnO Nanowire Gas Sensors With Schottky Contact. IEEE Sensors Journal, 2019, 19, 976-981.	4.7	10
54	Effects of nitrogen-dopant bonding states on liquid-flow-induced electricity generation of graphene: A comparative study. Results in Physics, 2019, 12, 1291-1293.	4.1	4

#	Article	IF	CITATIONS
55	Vertical Silicon Nanowire Thermoelectric Modules with Enhanced Thermoelectric Properties. Nano Letters, 2019, 19, 747-755.	9.1	40
56	LaF3 electrolyte-insulator-semiconductor sensor for detecting fluoride ions. Sensors and Actuators B: Chemical, 2019, 279, 183-188.	7.8	28
57	Nitrogen doping effect on flow-induced voltage generation from graphene-water interface. Applied Physics Letters, 2018, 112, .	3.3	16
58	Hexagonal Boron Nitride: The Thinnest Insulating Barrier to Microbial Corrosion. ACS Nano, 2018, 12, 2242-2252.	14.6	71
59	Reduction of Variability in Junctionless and Inversion-Mode FinFETs by Stringer Gate Structure. IEEE Transactions on Electron Devices, 2018, 65, 470-475.	3.0	14
60	All-printed triboelectric nanogenerator. Nano Energy, 2018, 44, 82-88.	16.0	97
61	Wearable UV Sensor Based on Carbon Nanotube-Coated Cotton Thread. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40198-40202.	8.0	49
62	Single-Event Transient in FinFETs and Nanosheet FETs. IEEE Electron Device Letters, 2018, 39, 1840-1843.	3.9	38
63	A Single Input Multiple Output (SIMO) Variation-Tolerant Nanosensor. ACS Sensors, 2018, 3, 1782-1788.	7.8	8
64	Plasma Jet Printing and <i>in Situ</i> Reduction of Highly Acidic Graphene Oxide. ACS Nano, 2018, 12, 5473-5481.	14.6	34
65	All 3D printed energy harvester for autonomous and sustainable resource utilization. Nano Energy, 2018, 52, 271-278.	16.0	40
66	Role of Doped Nitrogen in Graphene for Flowâ€Induced Power Generation. Advanced Engineering Materials, 2018, 20, 1800387.	3.5	16
67	Simulation of Graphene Field-Effect Transistor Biosensors for Bacterial Detection. Sensors, 2018, 18, 1715.	3.8	25
68	Leaky Integrate-and-Fire Biristor Neuron. IEEE Electron Device Letters, 2018, 39, 1457-1460.	3.9	55
69	Buffer effects of two functional groups against pH variation at aminosilanized Electrolyte-Oxide-Semiconductor (EOS) capacitor. Sensors and Actuators B: Chemical, 2017, 242, 324-331.	7.8	2
70	Optimization of Signal to Noise Ratio in Silicon Nanowire ISFET Sensors. IEEE Sensors Journal, 2017, 17, 2792-2796.	4.7	13
71	Application-Specific Catalyst Layers: Pt-Containing Carbon Nanofibers for Hydrogen Peroxide Detection. ACS Omega, 2017, 2, 496-507.	3.5	21
72	Chitosan-Covered Pd@Pt Core–Shell Nanocubes for Direct Electron Transfer in Electrochemical Enzymatic Glucose Biosensor. ACS Omega, 2017, 2, 1896-1904.	3.5	59

#	Article	IF	CITATIONS
73	Monolithically Integrated Microheater for On-Chip Annealing of Oxide Defects. IEEE Electron Device Letters, 2017, 38, 831-834.	3.9	16
74	Nanoscale Vacuum Channel Transistor. Nano Letters, 2017, 17, 2146-2151.	9.1	139
75	Hysteretic behavior of contact force response in triboelectric nanogenerator. Nano Energy, 2017, 32, 408-413.	16.0	47
76	Single Walled Carbon Nanotube Based Air Pocket Encapsulated Ultraviolet Sensor. ACS Sensors, 2017, 2, 1679-1683.	7.8	26
77	Flexible Graphene-Based Wearable Gas and Chemical Sensors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34544-34586.	8.0	603
78	Efficacy of atmospheric pressure dielectric barrier discharge for inactivating airborne pathogens. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 041101.	2.1	6
79	Graphene Fieldâ€Effect Transistors for the Sensitive and Selective Detection of <i>Escherichia coli</i> Using Pyreneâ€Tagged DNA Aptamer. Advanced Healthcare Materials, 2017, 6, 1700736.	7.6	84
80	Synthesis of gold nanoparticles supported on functionalized nanosilica using deep eutectic solvent for an electrochemical enzymatic glucose biosensor. Journal of Materials Chemistry B, 2017, 5, 7072-7081.	5.8	30
81	Work function consideration in vacuum field emission transistor design. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 062203.	1.2	7
82	Enhanced acetone sensing properties of monolayer graphene at room temperature by electrode spacing effect and UV illumination. Sensors and Actuators B: Chemical, 2017, 253, 77-84.	7.8	36
83	Triboelectric nanogenerator for Mars environment. Nano Energy, 2017, 39, 238-244.	16.0	49
84	Doping effects of surface functionalization on graphene with aromatic molecule and organic solvents. Applied Surface Science, 2017, 425, 713-721.	6.1	70
85	On-the-fly dopant redistribution in a silicon nanowire p–n junction. Nano Research, 2017, 10, 2845-2855.	10.4	5
86	Electrical Characteristics of Doped Silicon Nanowire Channel Field-Effect Transistor Biosensors. IEEE Sensors Journal, 2017, 17, 667-673.	4.7	13
87	Graphene Growth by Plasma-Enhanced Chemical Vapor Deposition (PECVD)., 2017,, 231-243.		1
88	Polysilicon near-infrared photodetector with performance comparable to crystalline silicon devices. Optics Express, 2017, 25, 32910.	3.4	5
89	A Sensor Array for the Detection and Discrimination of Methane and Other Environmental Pollutant Gases. Sensors, 2016, 16, 1163.	3.8	48
90	Design guidelines for nanoscale vacuum field emission transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	24

#	Article	IF	Citations
91	Plasma jet printing for flexible substrates. Applied Physics Letters, 2016, 108, .	3.3	58
92	Foldable and Disposable Memory on Paper. Scientific Reports, 2016, 6, 38389.	3.3	43
93	Sustainable electronics for nano-spacecraft in deep space missions. , 2016, , .		19
94	Surface analysis and electrochemistry of a robust carbon-nanofiber-based electrode platform H2O2 sensor. Applied Surface Science, 2016, 384, 251-257.	6.1	24
95	Multiplexed electrochemical immunosensor for label-free detection of cardiac markers using a carbon nanofiber array chip. Journal of Electroanalytical Chemistry, 2016, 773, 53-62.	3.8	35
96	Comparative Study of Field Effect Transistor Based Biosensors. IEEE Nanotechnology Magazine, 2016, 15, 956-961.	2.0	28
97	Electrochemical Characterization of Vertically Aligned Carbon Nanofiber Arrays Prepared by Holeâ€mask Colloidal Lithography. Electroanalysis, 2016, 28, 3039-3047.	2.9	5
98	Silicon-Based BioFETs with 3-D Nanostructure: Easy integration, precise control of nanostructure, and a low device-to-device variation. IEEE Nanotechnology Magazine, 2016, 10, 21-29.	1.3	0
99	Stringer Gate FinFET on Bulk Substrate. IEEE Transactions on Electron Devices, 2016, 63, 3432-3438.	3.0	10
100	What Does Nitric Acid Really Do to Carbon Nanofibers?. Journal of Physical Chemistry C, 2016, 120, 22655-22662.	3.1	19
101	System On Microheater for On-Chip Annealing of Defects Generated by Hot-Carrier Injection, Bias Temperature Instability, and Ionizing Radiation. IEEE Electron Device Letters, 2016, 37, 1543-1546.	3.9	22
102	Carbon nanofiber electrode array for the detection of lead. Electrochemistry Communications, 2016, 73, 89-93.	4.7	21
103	Bonding state and defects of nitrogen-doped graphene in oxygen reduction reaction. Chemical Physics Letters, 2016, 665, 117-120.	2.6	26
104	Carbon Nanotubeâ€Based Chemical Sensors. Small, 2016, 12, 2118-2129.	10.0	155
105	Correlation between sp ³ -to-sp ² Ratio and Surface Oxygen Functionalities in Tetrahedral Amorphous Carbon (ta-C) Thin Film Electrodes and Implications of Their Electrochemical Properties. Journal of Physical Chemistry C, 2016, 120, 8298-8304.	3.1	43
106	A Built-In Temperature Sensor in an Integrated Microheater. IEEE Sensors Journal, 2016, 16, 5543-5547.	4.7	9
107	The role of extra carbon source during the pre-annealing stage in the growth of carbon nanofibers. Carbon, 2016, 100, 351-354.	10.3	9
108	Chitosan supported silver nanowires as a platform for direct electrochemistry and highly sensitive electrochemical glucose biosensing. RSC Advances, 2016, 6, 20102-20108.	3.6	44

#	Article	IF	Citations
109	Highly sensitive photodetectors using ZnTe/ZnO core/shell nanowire field effect transistors with a tunable core/shell ratio. Journal of Materials Chemistry C, 2016, 4, 2040-2046.	5.5	17
110	Toward the Responsible Development and Commercialization of Sensor Nanotechnologies. ACS Sensors, 2016, 1, 207-216.	7.8	52
111	Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. Journal of Materials Chemistry B, 2016, 4, 2553-2560.	5.8	99
112	Structural morphology of carbon nanofibers grown on different substrates. Carbon, 2016, 98, 343-351.	10.3	25
113	Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosensors and Bioelectronics, 2016, 77, 695-701.	10.1	167
114	Nanoelectronics and nanosensors for space exploration. MRS Bulletin, 2015, 40, 822-828.	3.5	24
115	Floating Oscillator-Embedded Triboelectric Generator for Versatile Mechanical Energy Harvesting. Scientific Reports, 2015, 5, 16409.	3.3	31
116	Nano biosensors for neurochemical monitoring. Nano Convergence, 2015, 2, .	12.1	33
117	High efficiency silicon solar cell based on asymmetric nanowire. Scientific Reports, 2015, 5, 11646.	3.3	54
118	Integrated Carbon Nanostructures for Detection of Neurotransmitters. Molecular Neurobiology, 2015, 52, 859-866.	4.0	37
119	Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21263-21269.	8.0	46
120	Carbon Nanotube Synthesis Using Coal Pyrolysis. Langmuir, 2015, 31, 9464-9472.	3.5	34
121	Noise consideration for cancer marker detection using nanowire. , 2014, , .		0
122	Optimized operation of silicon nanowire field effect transistor sensors. Nanotechnology, 2014, 25, 505501.	2.6	13
123	Silicon Nanowire Biologically Sensitive Field Effect Transistors: Electrical Characteristics and Applications. Journal of Nanoscience and Nanotechnology, 2014, 14, 273-287.	0.9	13
124	Nanoscale vacuum channel transistor. , 2014, , .		2
125	Electrical and pH sensing characteristics of Si nanowire-based suspended FET biosensors. , 2014, , .		6
126	Carbon Nanotube Coated Paper Sensor for Damage Diagnosis. ACS Nano, 2014, 8, 12092-12097.	14.6	28

#	Article	IF	Citations
127	Thermally Phaseâ€Transformed In ₂ Se ₃ Nanowires for Highly Sensitive Photodetectors. Small, 2014, 10, 3795-3802.	10.0	43
128	Plasma Jet Printing of Electronic Materials on Flexible and Nonconformal Objects. ACS Applied Materials & Samp; Interfaces, 2014, 6, 20860-20867.	8.0	40
129	Vacuum gate dielectric gate-all-around nanowire for hot carrier injection and bias temperature instability free transistor. Applied Physics Letters, 2014, 104, .	3.3	24
130	Suspended honeycomb nanowire ISFETs for improved stiction-free performance. Nanotechnology, 2014, 25, 345501.	2.6	20
131	Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon, 2014, 72, 372-380.	10.3	121
132	Cofabrication of Vacuum Field Emission Transistor (VFET) and MOSFET. IEEE Nanotechnology Magazine, 2014, 13, 464-468.	2.0	71
133	Trigger and Self-Latch Mechanisms of n-p-n Bistable Resistor. IEEE Electron Device Letters, 2014, 35, 387-389.	3.9	18
134	Investigation of thermal resistance and power consumption in Ga-doped indium oxide (In ₂ O ₃) nanowire phase change random access memory. Applied Physics Letters, 2014, 104, 103510.	3.3	4
135	Label-free detection of C-reactive protein using a carbon nanofiber based biosensor. Biosensors and Bioelectronics, 2014, 59, 112-119.	10.1	123
136	Carbon nanotube ink for writing on cellulose paper. Materials Research Bulletin, 2014, 50, 249-253.	5.2	69
137	Kinetic model of carbon nanotube production from carbon dioxide in a floating catalytic chemical vapour deposition reactor. RSC Advances, 2014, 4, 9564.	3.6	15
138	Ga-doped indium oxide nanowire phase change random access memory cells. Nanotechnology, 2014, 25, 055205.	2.6	10
139	Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector. Physical Chemistry Chemical Physics, 2014, 16, 22687-22693.	2.8	54
140	Vertically aligned carbon nanofiber nanoelectrode arrays: electrochemical etching and electrode reusability. RSC Advances, 2014, 4, 22642.	3.6	9
141	A carbon nanotube based ammonia sensor on cellulose paper. RSC Advances, 2014, 4, 549-553.	3.6	113
142	Vertical graphene by plasma-enhanced chemical vapor deposition: Correlation of plasma conditions and growth characteristics. Journal of Materials Research, 2014, 29, 417-425.	2.6	23
143	X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites. Journal of Physical Chemistry C, 2014, 118, 18706-18712.	3.1	79
144	Annealing effect on the thermal conductivity of thermoelectric ZnTe nanowires. Materials Letters, 2014, 135, 87-91.	2.6	2

#	Article	IF	Citations
145	In Situ Observation of Melting Behavior of ZnTe Nanowires. Journal of Physical Chemistry C, 2014, 118, 15061-15067.	3.1	12
146	A Growth Mechanism for Free-Standing Vertical Graphene. Nano Letters, 2014, 14, 3064-3071.	9.1	221
147	Role of an encapsulating layer for reducing resistance drift in phase change random access memory. AIP Advances, 2014, 4, .	1.3	3
148	Nanowire BioFETs: An Overview. , 2014, , 225-240.		4
149	Functionalized-Carbon Nanotube Sensor for Room Temperature Ammonia Detection. Sensor Letters, 2014, 12, 1469-1476.	0.4	16
150	Room temperature carbon nanotube based sensor for carbon monoxide detection. Journal of Sensors and Sensor Systems, 2014, 3, 349-354.	0.9	36
151	Low temperature Pd/SnO2 sensor for carbon monoxide detection. Sensors and Actuators B: Chemical, 2013, 177, 770-775.	7.8	59
152	Nanostructured materials for supercapacitors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	38
153	A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbicacid. Biosensors and Bioelectronics, 2013, 42, 434-438.	10.1	123
154	Thermal conductivity of ZnTe nanowires. Journal of Applied Physics, 2013, 114, .	2.5	17
155	Thermally efficient and highly scalable In ₂ Se ₃ nanowire phase change memory. Journal of Applied Physics, 2013, 113, 164303.	2.5	16
156	Improved Electrical Characteristics of Honeycomb Nanowire ISFETs. IEEE Electron Device Letters, 2013, 34, 1059-1061.	3.9	23
157	Size-dependent characteristics of highly-scalable In <inf>2</inf> Se <inf>3</inf> nanowire phase-change random access memory., 2013,,.		0
158	Improved performance of In2Se3 nanowire phase-change memory with SiO2 passivation. Solid-State Electronics, 2013, 80, 10-13.	1.4	19
159	Bandgap engineering of CdxZn1â^'xTe nanowires. Nanoscale, 2013, 5, 932.	5 . 6	8
160	Resistive switching in single vertically-aligned ZnO nanowire grown directly on Cu substrate. Chemical Physics Letters, 2013, 575, 112-114.	2.6	12
161	A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water. Scientific Reports, 2013, 3, 1509.	3.3	108
162	Neuromodulation: selected approaches and challenges. Journal of Neurochemistry, 2013, 124, 436-453.	3.9	14

#	Article	IF	Citations
163	A carbon nanotube based ammonia sensor on cotton textile. Applied Physics Letters, 2013, 102, .	3.3	72
164	Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids. Advances in Physics, 2013, 62, 113-224.	14.4	486
165	Label-Free Detection of Cardiac Troponin-I Using Carbon Nanofiber Based Nanoelectrode Arrays. Analytical Chemistry, 2013, 85, 3858-3863.	6.5	152
166	Investigation of the electrical stability of Si-nanowire biologically sensitive field-effect transistors with embedded Ag/AgCl pseudo reference electrode. RSC Advances, 2013, 3, 7963.	3.6	19
167	Carbon Nanofiber Electrode for Neurochemical Monitoring. Molecular Neurobiology, 2013, 48, 380-385.	4.0	27
168	Controlled growth of vertical ZnO nanowires on copper substrate. Applied Physics Letters, 2013, 102, .	3.3	14
169	Investigation of electromigration in In2Se3 nanowire for phase change memory devices. Applied Physics Letters, 2013, 103, .	3.3	14
170	Dimensional Analysis and Mechanical Properties Characterization of Carbon Nanofibers under Subzero Temperatures. IEEE Nanotechnology Magazine, 2013, 12, 810-816.	2.0	1
171	A replacement of high- <i>k</i> process for CMOS transistor by atomic layer deposition. Semiconductor Science and Technology, 2013, 28, 082003.	2.0	4
172	Red-green-blue light sensitivity of oxide nanowire transistors for transparent display applications. AIP Advances, $2013, 3, .$	1.3	6
173	The effect of Ga content on In _{2<i>x</i>} Ga _{2â^'2<i>x</i>} O ₃ nanowire transistor characteristics. Nanotechnology, 2012, 23, 305203.	2.6	12
174	Carbon nanofiber multiplexed array and wireless instantaneous neurotransmitter concentration sensor for simultaneous detection of dissolved oxygen and dopamine. Biomedical Engineering Letters, 2012, 2, 271-277.	4.1	8
175	A Gate-Dielectric-Last Process via Photosolidification of Liquid Resin. IEEE Electron Device Letters, 2012, 33, 746-748.	3.9	1
176	Enabling communication and cooperation in bio-nanosensor networks: toward innovative healthcare solutions. IEEE Wireless Communications, 2012, 19, 42-51.	9.0	43
177	Liquid gate dielectric field effect transistor for a radiation nose. Sensors and Actuators A: Physical, 2012, 182, 1-5.	4.1	4
178	Post-growth modification of electrical properties of ZnTe nanowires. Chemical Physics Letters, 2012, 543, 117-120.	2.6	7
179	Vertical ZnO nanowire growth on metal substrates. Nanotechnology, 2012, 23, 194015.	2.6	66
180	Tin oxide and indium oxide nanowire transport characteristics: influence of oxygen concentration during synthesis. Semiconductor Science and Technology, 2012, 27, 035018.	2.0	8

#	Article	IF	CITATIONS
181	Photostable Zn ₂ SnO ₄ Nanowire Transistors for Transparent Displays. ACS Nano, 2012, 6, 4912-4920.	14.6	41
182	Graphene metal oxide composite supercapacitor electrodes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	1.2	27
183	Carbon Nanotube Based Humidity Sensor on Cellulose Paper. Journal of Physical Chemistry C, 2012, 116, 22094-22097.	3.1	259
184	A computational and experimental investigation of the mechanical properties of single ZnTe nanowires. Nanoscale, 2012, 4, 897-903.	5.6	20
185	Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chemical Communications, 2012, 48, 735-737.	4.1	328
186	Vacuum nanoelectronics: Back to the future?â€"Gate insulated nanoscale vacuum channel transistor. Applied Physics Letters, 2012, 100, .	3.3	195
187	Coal as a carbon source for carbon nanotube synthesis. Carbon, 2012, 50, 2679-2690.	10.3	90
188	Thermal Breakdown of ZnTe Nanowires. ChemPhysChem, 2012, 13, 347-352.	2.1	13
189	Investigation of Nucleation Mechanism and Tapering Observed in ZnO Nanowire Growth by Carbothermal Reduction Technique. Nanoscale Research Letters, 2011, 6, 3.	5.7	14
190	A carbon-nanotube-based sensor array for formaldehyde detection. Nanotechnology, 2011, 22, 055502.	2.6	31
191	Note: Two-dimensional resistivity mapping method for characterization of thin films and nanomaterials. Review of Scientific Instruments, 2011, 82, 086117.	1.3	1
192	Tailoring the surface properties and carrier dynamics in SnO ₂ nanowires. Nanotechnology, 2011, 22, 285709.	2.6	30
193	Plasma nanotechnology: past, present and future. Journal Physics D: Applied Physics, 2011, 44, 174002.	2.8	61
194	Thermal phase transformation of In2Se3 nanowires studied by in situ synchrotron radiation X-ray diffraction. Journal of Materials Chemistry, 2011, 21, 6944.	6.7	40
195	pH sensing and noise characteristics of Si nanowire ion-sensitive field effect transistors. , 2011, , .		2
196	Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry. Analyst, The, 2011, 136, 1802.	3.5	88
197	Silicon nanowire ion sensitive field effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics. Analyst, The, 2011, 136, 5012.	3.5	66
198	Control of Semiconducting and Metallic Indium Oxide Nanowires. ACS Nano, 2011, 5, 3917-3922.	14.6	22

#	Article	IF	CITATIONS
199	U-Health Smart Home. IEEE Nanotechnology Magazine, 2011, 5, 6-11.	1.3	70
200	Detection of ricin using a carbon nanofiber based biosensor. Biosensors and Bioelectronics, 2011, 28, 428-433.	10.1	34
201	Electronic properties of Yâ€junctions in SnO ₂ nanowires. Physica Status Solidi (B): Basic Research, 2011, 248, 2848-2852.	1.5	4
202	Trace Detection of Hydrogen Peroxide Vapor Using a Carbonâ€Nanotubeâ€Based Chemical Sensor. Small, 2011, 7, 1714-1718.	10.0	26
203	Graphene: Piecing it Together. Advanced Materials, 2011, 23, 4471-4490.	21.0	127
204	Synthesis of ZnTe nanostructures by vapor–liquid–solid technique. Chemical Physics Letters, 2011, 504, 62-66.	2.6	34
205	A nanowire-based shift register for display scan drivers. Nanotechnology, 2011, 22, 405203.	2.6	3
206	Copper oxide transistor on copper wire for e-textile. Applied Physics Letters, 2011, 98, 192102.	3.3	18
207	Copper oxide resistive switching memory for e-textile. AIP Advances, 2011, 1, .	1.3	39
208	In situobservation of morphological change in CdTe nano- and submicron wires. Nanotechnology, 2011, 22, 435204.	2.6	11
209	Fabrication of carbon-nanotube-based sensor array and interference study. Journal of Materials Research, 2011, 26, 2017-2023.	2.6	10
210	Nanowires in Thermoelectric Devices. Transactions on Electrical and Electronic Materials, 2011, 12, 227-233.	1.9	8
211	Nanoscale memory devices. Nanotechnology, 2010, 21, 412001.	2.6	97
212	Investigation of carbon nanotube field emitter geometry for increased current density. Solid-State Electronics, 2010, 54, 1543-1548.	1.4	8
213	Vertically aligned carbon nanofiber electrode arrays for nucleic acid detection. Chemical Physics Letters, 2010, 499, 241-246.	2.6	20
214	Applications of Nanobiotechnology in Ophthalmology – Part I. Ophthalmic Research, 2010, 44, 1-16.	1.9	9
215	Surface Smoothness Effect for the Direct Growth of Carbon Nanotubes on Bulk FeCrAl Metal Substrates. Journal of Nanoscience and Nanotechnology, 2010, 10, 4082-4088.	0.9	11
216	Growth and properties of tin oxide nanowires and the effect of annealing conditions. Semiconductor Science and Technology, 2010, 25, 024012.	2.0	39

#	Article	IF	CITATIONS
217	Characterization of Carbon Nanofiber Electrode Arrays Using Electrochemical Impedance Spectroscopy: Effect of Scaling Down Electrode Size. ACS Nano, 2010, 4, 955-961.	14.6	75
218	Carbon nanotube pillar arrays for achieving high emission current densities. Applied Physics Letters, 2009, 95, 133111.	3.3	35
219	On the hydrogen storage capacity of carbon nanotube bundles. Applied Physics Letters, 2009, 95, 163111.	3.3	21
220	Arrays of carbon nanofibers as a platform for biosensing at the molecular level and for tissue engineering and implantation. Bio-Medical Materials and Engineering, 2009, 19, 35-43.	0.6	8
221	Process synthesis and optimization for the production of carbon nanostructures. Nanotechnology, 2009, 20, 375602.	2.6	15
222	Catalyzed chemical vapor deposition of one-dimensional nanostructures and their applications. Progress in Crystal Growth and Characterization of Materials, 2009, 55, 1-21.	4.0	28
223	Wafer-scale fabrication of patterned carbon nanofiber nanoelectrode arrays: A route for development of multiplexed, ultrasensitive disposable biosensors. Biosensors and Bioelectronics, 2009, 24, 2818-2824.	10.1	95
224	Rapid thermal annealing effects on tin oxide nanowires prepared by vapor–liquid–solid technique. Nanotechnology, 2009, 20, 065704.	2.6	44
225	Observation of ultraviolet emission and effect of surface states on the luminescence from tin oxide nanowires. Applied Physics Letters, 2009, 94, .	3.3	64
226	A review of plasma enhanced chemical vapour deposition of carbon nanotubes. Journal Physics D: Applied Physics, 2009, 42, 213001.	2.8	208
227	Vertically Aligned Carbon Nanofibers: Interconnecting Solid State Electronics with Biosystems. Journal of Nanoscience and Nanotechnology, 2009, 9, 5038-5046.	0.9	9
228	Chalcogenide-Nanowire-Based Phase Change Memory. IEEE Nanotechnology Magazine, 2008, 7, 496-502.	2.0	49
229	Germanium Antimonide Phase-Change Nanowires for Memory Applications. IEEE Transactions on Electron Devices, 2008, 55, 3131-3135.	3.0	30
230	Height Independent Compressive Modulus of Vertically Aligned Carbon Nanotube Arrays. Nano Letters, 2008, 8, 511-515.	9.1	77
231	Field emission properties of carbon nanotube pillar arrays. Journal of Applied Physics, 2008, 103, 064312.	2.5	45
232	One-Dimensional Phase-Change Nanomaterials for Information Storage Applications. , 2008, , 273-290.		0
233	Synthesis of germanium nanowires on insulator catalyzed by indium or antimony. Journal of Vacuum Science & Technology B, 2007, 25, 415.	1.3	36
234	Indium selenide nanowire phase-change memory. Applied Physics Letters, 2007, 91, .	3.3	94

#	Article	IF	Citations
235	Synthesis and nanoscale thermal encoding of phase-change nanowires. Applied Physics Letters, 2007, 90, 183116.	3.3	48
236	Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials. IEEE Transactions on Components and Packaging Technologies, 2007, 30, 92-100.	1.3	292
237	Vertically Aligned Carbon Nanofiber Architecture as a Multifunctional 3-D Neural Electrical Interface. IEEE Transactions on Biomedical Engineering, 2007, 54, 1121-1128.	4.2	133
238	One-Dimensional Phase-Change Nanostructure:  Germanium Telluride Nanowire. Journal of Physical Chemistry C, 2007, 111, 2421-2425.	3.1	95
239	Synthesis of Group III Antimonide Nanowires. Journal of Physical Chemistry C, 2007, 111, 7339-7347.	3.1	48
240	Structural and Electrical Characterization of Carbon Nanofibers for Interconnect Via Applications. IEEE Nanotechnology Magazine, 2007, 6, 688-695.	2.0	71
241	Palladium catalyzed formation of carbon nanofibers by plasma enhanced chemical vapor deposition. Carbon, 2007, 45, 424-428.	10.3	18
242	Monolayer to Multilayer Nanostructural Growth Transition in N-Type Oligothiophenes on Au(111) and Implications for Organic Field-Effect Transistor Performance. Nano Letters, 2006, 6, 2447-2455.	9.1	67
243	Characteristics of aligned carbon nanofibers for interconnect via applications. IEEE Electron Device Letters, 2006, 27, 221-224.	3.9	44
244	Corrections to "Characteristics of Aligned Carbon Nanofibers for Interconnect Via Applications". IEEE Electron Device Letters, 2006, 27, 622-622.	3.9	37
245	III-VI compound semiconductor indium selenide (In2Se3) nanowires: Synthesis and characterization. Applied Physics Letters, 2006, 89, 233121.	3.3	86
246	Nano Chemical Sensors With Polymer-Coated Carbon Nanotubes. IEEE Sensors Journal, 2006, 6, 1047-1051.	4.7	70
247	Carbon nanotubes by plasma-enhanced chemical vapor deposition. Pure and Applied Chemistry, 2006, 78, 1117-1125.	1.9	80
248	Temperature-dependent Characteristics of Carbon Nanofiber Arrays. , 2006, , .		1
249	A carbon nanotube sensor array for sensitive gas discrimination using principal component analysis. Journal of Electroanalytical Chemistry, 2006, 593, 105-110.	3.8	124
250	Nanotechnology: Role in emerging nanoelectronics. Solid-State Electronics, 2006, 50, 536-544.	1.4	101
251	One-dimensional Germanium Nanowires for Future Electronics. Journal of Cluster Science, 2006, 17, 579-597.	3.3	66
252	Indium and tin oxide nanowires by vapor-liquid-solid growth technique. Journal of Electronic Materials, 2006, 35, 200-206.	2.2	20

#	Article	IF	Citations
253	Biomolecular Sensing for Cancer Diagnostics Using Carbon Nanotubes. , 2006, , 1-17.		2
254	Nanomanipulation and fabrication by ion beam molding. IEEE Nanotechnology Magazine, 2006, 5, 255-257.	2.0	9
255	Near-infrared semiconductor subwavelength-wire lasers. Applied Physics Letters, 2006, 88, 163115.	3.3	136
256	Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. Journal of Vacuum Science & Technology B, 2006, 24, 331.	1.3	198
257	Single component gas transport through 10nm pores: Experimental data and hydrodynamic prediction. Journal of Membrane Science, 2005, 253, 209-215.	8.2	15
258	Carbon nanotube tips for scanning probe microscopy: fabrication and high aspect ratio nanometrology. Measurement Science and Technology, 2005, 16, 2138-2146.	2.6	79
259	Inlaid Multi-Walled Carbon Nanotube Nanoelectrode Arrays for Electroanalysis. Electroanalysis, 2005, 17, 15-27.	2.9	153
260	Modifying the Electronic Character of Single-Walled Carbon Nanotubes Through Anisotropic Polymer Interaction: A Raman Study. Advanced Functional Materials, 2005, 15, 1183-1187.	14.9	18
261	Transparent Poly(methyl methacrylate)/Single-Walled Carbon Nanotube (PMMA/SWNT) Composite Films with Increased Dielectric Constants. Advanced Functional Materials, 2005, 15, 101-106.	14.9	126
262	Growth of Individual Vertical Germanium Nanowires. Advanced Materials, 2005, 17, 549-553.	21.0	90
263	Catalyst Metal Selection for Synthesis of Inorganic Nanowires. Advanced Materials, 2005, 17, 1773-1777.	21.0	77
264	Effect of monolayer order and dynamics on the electronic transport of molecular wires. Applied Physics A: Materials Science and Processing, 2005, 80, 1215-1223.	2.3	7
265	Complex dynamics of carbon nanotube probe tips. Ultramicroscopy, 2005, 103, 95-102.	1.9	25
266	A Gas Sensor Array Using Carbon Nanotubes and Microfabrication Technology. Electrochemical and Solid-State Letters, 2005, 8, H100.	2.2	56
267	Silicon Nanowire Synthesis by a Vapor–Liquid–Solid Approach. Journal of Nanoscience and Nanotechnology, 2005, 5, 831-835.	0.9	10
268	Wafer Scale Nanopatterning and Nanomaterials Synthesis of Functional Nano Probes for Atomic Force Microscopy. Materials Research Society Symposia Proceedings, 2005, 879, 1.	0.1	0
269	Vertically Aligned Multi-Walled Carbon Nanotube Arrays as Thermal Interface Materials and Measurement Technique. , 2005, , 777.		3
270	Structural characteristics of carbon nanofibers for on-chip interconnect applications. Applied Physics Letters, 2005, 87, 233105.	3.3	38

#	Article	IF	Citations
271	Mechanisms of 1D Crystal Growth in Reactive Vapor Transport:Â Indium Nitride Nanowires. Nano Letters, 2005, 5, 1625-1631.	9.1	129
272	Functionalization of Carbon Nanotubes via Nitrogen Glow Discharge. Journal of Physical Chemistry B, 2005, 109, 23466-23472.	2.6	87
273	An investigation of plasma chemistry for dc plasma enhanced chemical vapour deposition of carbon nanotubes and nanofibres. Nanotechnology, 2005, 16, 925-930.	2.6	45
274	Characterization of a radio frequency carbon nanotube growth plasma by ultraviolet absorption and optical emission spectroscopy. Journal of Applied Physics, 2005, 97, 084311.	2.5	17
275	Improvement of Thermal Contact Resistance by Carbon Nanotubes and Nanofibers. Journal of Nanoscience and Nanotechnology, 2004, 4, 964-967.	0.9	37
276	Transport in self-assembled molecular wires: Effect of packing and order. Physical Review B, 2004, 69, .	3.2	17
277	Three-dimensional columnar optical nanostructures fabricated by using lithography-free templating approach. Applied Physics Letters, 2004, 84, 2898-2900.	3.3	3
278	Residual gas analysis of a dc plasma for carbon nanofiber growth. Journal of Applied Physics, 2004, 96, 5284-5292.	2.5	15
279	Nonlinear tapping dynamics of multi-walled carbon nanotube tipped atomic force microcantilevers. Nanotechnology, 2004, 15, 416-421.	2.6	61
280	Thermal Conductivity of Carbon Nanotube Composite Films. Materials Research Society Symposia Proceedings, 2004, 812, F3.18.1.	0.1	14
281	Modelling of magnetic field profile effects in a helicon source. Plasma Sources Science and Technology, 2004, 13, 553-561.	3.1	6
282	Radio-Frequency Oxygen Plasma as a Sterilization Source. AIAA Journal, 2004, 42, 823-832.	2.6	75
283	Multiwalled carbon nanotube AFM probes for surface characterization of micro/nanostructures. Microsystem Technologies, 2004, 10, 633-639.	2.0	22
284	Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chemical Physics Letters, 2004, 391, 344-348.	2.6	349
285	Carbon Nanotube Scanning Probe for Imaging in Aqueous Environment. IEEE Transactions on Nanobioscience, 2004, 3, 56-60.	3.3	45
286	Large-Scale Fabrication of Carbon Nanotube Probe Tips for Atomic Force Microscopy Critical Dimension Imaging Applications. Nano Letters, 2004, 4, 1301-1308.	9.1	116
287	The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays. Journal of Materials Chemistry, 2004, 14, 676.	6.7	248
288	Vertically aligned carbon nanotube heterojunctions. Applied Physics Letters, 2004, 85, 2364-2366.	3.3	28

#	Article	IF	Citations
289	Monte Carlo sensitivity analysis of CF2 and CF radical densities in a c 4F8 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 2290-2298.	2.1	26
290	High Lateral Resolution Imaging with Sharpened Tip of Multi-Walled Carbon Nanotube Scanning Probe. Journal of Physical Chemistry B, 2004, 108, 2816-2821.	2.6	50
291	The Significance of Plasma Heating in Carbon Nanotube and Nanofiber Growth. Nano Letters, 2004, 4, 921-926.	9.1	135
292	Functionalization of Carbon Nanotubes by Ammonia Glow-Discharge:  Experiments and Modeling. Journal of Physical Chemistry B, 2004, 108, 8166-8172.	2.6	97
293	Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays. Nano Letters, 2004, 4, 2403-2407.	9.1	197
294	Gas Transport Characteristics through a Carbon Nanotubule. Nano Letters, 2004, 4, 377-381.	9.1	83
295	Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devices. Nanotechnology, 2004, 15, 9-15.	2.6	77
296	Data Storage Studies on Nanowire Transistors with Self-Assembled Porphyrin Molecules. Journal of Physical Chemistry B, 2004, 108, 9646-9649.	2.6	105
297	Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor. Nano Letters, 2004, 4, 1247-1252.	9.1	681
298	The fluorination of single wall carbon nanotubes using microwave plasma. Nanotechnology, 2004, 15, 1650-1654.	2.6	61
299	Electron Transport Through Metal–Multiwall Carbon Nanotube Interfaces. IEEE Nanotechnology Magazine, 2004, 3, 311-317.	2.0	94
300	Direct Integration of Metal Oxide Nanowire in Vertical Field-Effect Transistor. Nano Letters, 2004, 4, 651-657.	9.1	264
301	Other Applications. , 2004, , 277-279.		13
302	System optimization for the development of ultrasensitive electronic biosensors using carbon nanotube nanoelectrode arrays. Mcb Mechanics and Chemistry of Biosystems, 2004, 1, 69-80.	0.3	1
303	Carbon Nanotube Sensors for Gas and Organic Vapor Detection. Nano Letters, 2003, 3, 929-933.	9.1	1,664
304	CO2 adsorption in single-walled carbon nanotubes. Chemical Physics Letters, 2003, 376, 761-766.	2.6	334
305	Corrected equations for membrane transport characterization by manometric techniques. Journal of Membrane Science, 2003, 221, 47-51.	8.2	3
306	Impact of Low-Temperature Plasmas on Deinococcus radiodurans and Biomolecules. Biotechnology Progress, 2003, 19, 776-783.	2.6	73

#	Article	IF	CITATIONS
307	High throughput methodology for carbon nanomaterials discovery and optimization. Applied Catalysis A: General, 2003, 254, 85-96.	4.3	12
308	Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology, 2003, 14, 1239-1245.	2.6	179
309	Fourier-transform infrared and optical emission spectroscopy of CF4/O2/Ar mixtures in an inductively coupled plasma. Journal of Applied Physics, 2003, 93, 5053-5062.	2.5	21
310	Bottom-up approach for carbon nanotube interconnects. Applied Physics Letters, 2003, 82, 2491-2493.	3.3	491
311	Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers. Journal of Applied Physics, 2003, 94, 4070-4078.	2.5	117
312	Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection. Nano Letters, 2003, 3, 597-602.	9.1	633
313	Gas Permeability of a Buckypaper Membrane. Nano Letters, 2003, 3, 189-192.	9.1	107
314	Carbon nanotube growth by PECVD: a review. Plasma Sources Science and Technology, 2003, 12, 205-216.	3.1	697
315	Proton Irradiation of Carbon Nanotubes. Nano Letters, 2003, 3, 643-646.	9.1	71
316	Model based comparison of thermal and plasma chemical vapor deposition of carbon nanotubes. Journal of Applied Physics, 2003, 93, 750-752.	2.5	78
317	Growth of Epitaxial Nanowires at the Junctions of Nanowalls. Science, 2003, 300, 1249-1249.	12.6	396
318	Growth of Carbon Nanotubes:Â A Combinatorial Method To Study the Effects of Catalysts and Underlayers. Journal of Physical Chemistry B, 2003, 107, 8484-8489.	2.6	79
319	Epitaxial Directional Growth of Indium-Doped Tin Oxide Nanowire Arrays. Nano Letters, 2003, 3, 925-928.	9.1	138
320	Modeling gas flow through microchannels and nanopores. Journal of Applied Physics, 2003, 93, 4870-4879.	2.5	546
321	Modeling of a helicon plasma source. IEEE Transactions on Plasma Science, 2003, 31, 464-470.	1.3	17
322	Carbon nanotube networks by chemical vapor deposition. Applied Physics Letters, 2003, 82, 817-819.	3.3	43
323	Simulation of the dc plasma in carbon nanotube growth. Journal of Applied Physics, 2003, 93, 6284-6290.	2.5	56
324	Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3plasma. Plasma Sources Science and Technology, 2003, 12, 225-234.	3.1	39

#	Article	IF	CITATIONS
325	Optical properties of single-crystalline ZnO nanowires on m-sapphire. Applied Physics Letters, 2003, 82, 2023-2025.	3.3	283
326	Processing of Transparent Polymer Nanotube Composites via Heat, UV Radiation and Ionizing (gamma) Radiation using Ultrasonication and Solvent Dissolution. Materials Research Society Symposia Proceedings, 2003, 772, 241.	0.1	0
327	Optical path length control in plasma absorption measurements. Review of Scientific Instruments, 2002, 73, 2578-2582.	1.3	2
328	Effects of gamma radiation on poly(methyl methacrylate)/single-wall nanotube composites. Journal of Materials Research, 2002, 17, 2507-2513.	2.6	71
329	Langmuir Probe Measurements in Inductively Coupled CF[sub 4]-Ar Plasmas. Journal of the Electrochemical Society, 2002, 149, C487.	2.9	3
330	Mass spectrometric measurements in inductively coupled CF4/Ar plasmas. Plasma Sources Science and Technology, 2002, 11, 397-406.	3.1	14
331	Detection of chamber conditioning by CF[sub 4] plasmas in an inductively coupled plasma reactor. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 353.	1.6	17
332	Simulations and experiments of etching of silicon in HBr plasmas for high aspect ratio features. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2199.	1.6	19
333	Langmuir probe and mass spectrometric measurements in inductively coupled CF4plasmas. Plasma Sources Science and Technology, 2002, 11, 69-76.	3.1	33
334	Fourier transform infrared spectroscopy of CF4plasmas in the GEC reference cell. Plasma Sources Science and Technology, 2002, 11, 77-90.	3.1	17
335	Modeling of the HiPco Process for Carbon Nanotube Production. I. Chemical Kinetics. Journal of Nanoscience and Nanotechnology, 2002, 2, 523-534.	0.9	27
336	Modeling of the HiPco Process for Carbon Nanotube Production. II. Reactor-Scale Analysis. Journal of Nanoscience and Nanotechnology, 2002, 2, 535-544.	0.9	12
337	Plasma-Enhanced Chemical Vapor Deposition of Multiwalled Carbon Nanofibers. Journal of Nanoscience and Nanotechnology, 2002, 2, 475-480.	0.9	33
338	Growth of carbon nanotubes by thermal and plasma chemical vapour deposition processes and applications in microscopy. Nanotechnology, 2002, 13, 280-284.	2.6	42
339	Heterogeneous Single-Walled Carbon Nanotube Catalyst Discovery and Optimization. Chemistry of Materials, 2002, 14, 1891-1896.	6.7	46
340	High Density Array Matrices of Polymeric Structures by Ultrathin Interfacial Layer-Mediated Double Replication Approach. Nano Letters, 2002, 2, 961-964.	9.1	6
341	DIRECTED GROWTH OF SINGLE-WALLED CARBON NANOTUBES. International Journal of Nanoscience, 2002, 01, 197-204.	0.7	3
342	Functionalization of Carbon Nanotubes Using Atomic Hydrogen from a Glow Discharge. Nano Letters, 2002, 2, 73-77.	9.1	179

#	Article	IF	CITATIONS
343	Preparation of Nucleic Acid Functionalized Carbon Nanotube Arrays. Nano Letters, 2002, 2, 1079-1081.	9.1	349
344	Neutral gas temperature estimate in CF4/O2/Ar inductively coupled plasmas. Applied Physics Letters, 2002, 81, 990-992.	3.3	24
345	Neutral gas temperature estimates in an inductively coupled CF4 plasma by fitting diatomic emission spectra. Journal of Applied Physics, 2002, 91, 8955-8964.	2.5	68
346	Electronic properties of multiwalled carbon nanotubes in an embedded vertical array. Applied Physics Letters, 2002, 81, 910-912.	3.3	154
347	A coupled plasma and sheath model for high density reactors. IEEE Transactions on Plasma Science, 2002, 30, 653-659.	1.3	7
348	Carbon nanotube scanning probe for profiling of deep-ultraviolet and 193 nm photoresist patterns. Applied Physics Letters, 2002, 81, 901-903.	3.3	66
349	Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. Journal of Applied Physics, 2002, 91, 6027-6033.	2.5	213
350	A glow-discharge approach for functionalization of carbon nanotubes. Applied Physics Letters, 2002, 81, 5237-5239.	3.3	74
351	Multiwalled Carbon Nanotubes by Chemical Vapor Deposition Using Multilayered Metal Catalysts. Journal of Physical Chemistry B, 2002, 106, 5629-5635.	2.6	120
352	How does a multiwalled carbon nanotube atomic force microscopy probe affect the determination of surface roughness statistics?. Surface Science, 2002, 515, 453-461.	1.9	22
353	Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chemical Physics Letters, 2002, 365, 69-74.	2.6	222
354	Novel Three-Dimensional Electrodes:  Electrochemical Properties of Carbon Nanotube Ensembles. Journal of Physical Chemistry B, 2002, 106, 9299-9305.	2.6	293
355	Plasma-Enhanced Chemical Vapor Deposition of Multiwalled Carbon Nanofibers. Journal of Nanoscience and Nanotechnology, 2002, 2, 475-480.	0.9	6
356	Modelling of inductively coupled plasma processing reactors. Journal Physics D: Applied Physics, 2001, 34, 2742-2747.	2.8	16
357	Carbon nanotube based nanotechnology - Opportunities and challenges. , 2001, , .		2
358	Carbon nanotube tip probes: stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors. Nanotechnology, 2001, 12, 363-367.	2.6	161
359	Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes. Langmuir, 2001, 17, 260-264.	3.5	106
360	Nanotubes in nanoelectronics: transport, growth and modeling. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 11, 118-125.	2.7	10

#	Article	IF	Citations
361	Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth. Chemical Physics Letters, 2001, 348, 368-374.	2.6	170
362	Mass spectrometric and Langmuir probe measurements in inductively coupled plasmas in Ar, CHF3/Ar and CHF3/Ar/O2mixtures. Plasma Sources Science and Technology, 2001, 10, 191-204.	3.1	40
363	Impact of gas heating in inductively coupled plasmas. Journal of Applied Physics, 2001, 90, 2148-2157.	2.5	53
364	Semianalytical ion current model for radio-frequency driven collisionless sheaths. Journal of Applied Physics, 2001, 89, 5932-5938.	2.5	5
365	Multilayer Film Assembly of Carbon Nanotubes. Journal of Nanoparticle Research, 2000, 2, 387-389.	1.9	10
366	Improved fabrication approach for carbon nanotube probe devices. Applied Physics Letters, 2000, 77, 3453-3455.	3.3	98
367	Plasma Reactor Modeling. , 2000, , 123-144.		1
368	Ion dynamics model for collisionless radio frequency sheaths. Journal of Applied Physics, 2000, 87, 7176-7184.	2.5	51
369	Effect of metastable oxygen molecules in high density power-modulated oxygen discharges. Journal of Applied Physics, 2000, 87, 8323-8333.	2.5	61
370	A Continuum Model for the Inductively Coupled Plasma Reactor in Semiconductor Processing. Journal of the Electrochemical Society, 1999, 146, 2705-2711.	2.9	33
371	Feature Profile Evolution Simulation Using a Level Set Method. Journal of the Electrochemical Society, 1999, 146, 1889-1894.	2.9	15
372	Electronic Applications of Carbon Nanotubes Become Closer to Reality. Journal of Nanoparticle Research, 1999, 1, 151-152.	1.9	30
373	A self-consistent fluid simulation of an inductively coupled plasma reactor. IEEE Transactions on Plasma Science, 1999, 27, 54-55.	1.3	4
374	Simulations of step responses of electronegative radio-frequency capacitively coupled discharges. Journal of Applied Physics, 1998, 84, 1848-1858.	2.5	4
375	Modeling of a Pulsed-PowerSF6Plasma. Japanese Journal of Applied Physics, 1997, 36, 4820-4823.	1.5	11
376	A Direct Simulation Monte Carlo Study of Flow Considerations in Plasma Reactor Development for 300 mm Processing. Journal of the Electrochemical Society, 1997, 144, 3999-4004.	2.9	10
377	Characteristics of an Electron Cyclotron Resonance Plasma Source for the Production of Active Nitrogen Species in III-V Nitride Epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 1997, 2, 1.	1.0	5
378	Two-dimensional analysis of radio frequency discharges. IEEE Transactions on Plasma Science, 1996, 24, 119-120.	1.3	8

#	Article	IF	CITATIONS
379	A twoâ€dimensional moment equationsâ€based analysis of radio frequency capacitively coupled discharges. Journal of Applied Physics, 1996, 80, 7154-7156.	2.5	1
380	A spatially-averaged model for high density discharges. Vacuum, 1996, 47, 215-220.	3.5	14
381	Analysis of pulseâ€time modulated highâ€density discharges. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2122-2126.	2.1	26
382	A multicomponent, multitemperature model for high density plasma processing reactors. Journal of Applied Physics, 1996, 80, 1345-1351.	2.5	31
383	Coupled model for neutral transport and charged species dynamics in high density plasma reactors. Journal of Applied Physics, 1995, 78, 6432-6440.	2.5	14
384	Very High Frequency Capacitive Plasma Sources., 1995,, 149-190.		7
385	Very high-frequency capacitively coupled argon discharges. Plasma Sources Science and Technology, 1994, 3, 181-189.	3.1	75
386	A comparative materials study of magnetron ion etched GaAs using Freonâ€12, SiCl ₄ and BCl ₃ . Scanning, 1993, 15, 225-231.	1.5	2
387	Radio frequency discharge modeling: Moment equations approach. Journal of Applied Physics, 1993, 74, 2250-2259.	2.5	53
388	Modeling of plasma processing discharges. , 1993, , .		0
389	Analysis of a magnetron electronegative rf discharge. Journal of Applied Physics, 1992, 71, 2574-2579.	2.5	4
390	Effects of BCl3magnetron ion etching on deep levels in GaAs. Journal of Applied Physics, 1992, 72, 5512-5513.	2.5	0
391	Magnetron etching of GaAs: Etch characteristics and surface characterization. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 1147-1151.	2.1	9
392	Modeling of electronegative radio-frequency discharges. IEEE Transactions on Plasma Science, 1991, 19, 122-129.	1.3	47
393	A continuum model for lowâ€pressure radioâ€frequency discharges. Journal of Applied Physics, 1991, 69, 8047-8051.	2.5	32
394	Low Damage Magnetron Reactive Ion Etching of GaAs. Materials Research Society Symposia Proceedings, 1991, 240, 323.	0.1	0
395	Magnetron enhanced etching of GaAs. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 935-938.	2.1	10
396	Magnetron reactive ion etching of GaAs: Residual damage study. Journal of Applied Physics, 1991, 69, 695-697.	2.5	17

#	Article	IF	CITATIONS
397	RF Discharge Modeling Through Solutions to the Moments of the Boltzmann Transport Equations. Materials Research Society Symposia Proceedings, 1990, 190, 149.	0.1	1
398	Glow discharge simulation through solutions to the moments of the Boltzmann transport equation. Journal of Applied Physics, 1990, 68, 1506-1512.	2.5	95
399	Analysis of a selfâ€aligned AlGaAs/GaAs heterostructure bipolar transistor: Steadyâ€state and transient simulations. Journal of Applied Physics, 1989, 66, 3348-3354.	2.5	3
400	Modeling of an inversion base bipolar transistor. IEEE Transactions on Electron Devices, 1989, 36, 1-7.	3.0	4
401	Numerical study of an AlGaAs/GaAs heterostructure bipolar transistor: Emitter design and compositional grading. Solid-State Electronics, 1988, 31, 1611-1618.	1.4	10
402	Numerical simulation of an AlGaAs/GaAs bipolar inversion channel field effect transistor. Solid-State Electronics, 1988, 31, 1023-1030.	1.4	14
403	Response to the comments by Simmons and Taylor. Solid-State Electronics, 1988, 31, 1469.	1.4	0
404	Scaling, material, and design characteristics of the permeable base transistor. Journal of Applied Physics, 1988, 64, 4733-4750.	2.5	3
405	Thermocapillary migration of a gas bubble in an arbitrary direction with respect to a plane surface. Journal of Colloid and Interface Science, 1987, 115, 206-219.	9.4	40
406	The thermocapillary motion of two bubbles oriented arbitrarily relative to a thermal gradient. Journal of Colloid and Interface Science, 1984, 97, 291-294.	9.4	45
407	The slow axisymmetric motion of two bubbles in a thermal gradient. Journal of Colloid and Interface Science, 1983, 94, 243-257.	9.4	72
408	Bubble Behavior in Molten Glass in a Temperature Gradient. Materials Research Society Symposia Proceedings, 1981, 9, 311.	0.1	0
409	Thermocapillary migration of a bubble normal to a plane surface. Journal of Colloid and Interface Science, 1981, 83, 199-208.	9.4	45
410	Electrical characterization of carbon nanofibers for on-chip interconnect applications., 0,,.		3
411	Nanotechnology: An Overview and Integration with MEMS. , 0, , .		4
412	Nanotechnology in Silicon CMOS Fabrication and Nanoelectronics. , 0, , .		0
413	Temperature-dependent Characteristics of Carbon Nanofiber Arrays. , 0, , .		0
414	Indium Assisted Multiwalled Carbon Nanotube Array Thermal Interface Materials. , 0, , .		6