
Yumiko Saga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2011447/publications.pdf Version: 2024-02-01

YUMIKO SACA

#	Article	IF	CITATIONS
1	Repurposing of the enhancer-promoter communication underlies the compensation of Mesp2 by Mesp1. PLoS Genetics, 2022, 18, e1010000.	1.5	1
2	How Germ Cells Determine Their Own Sexual Fate in Mice. Sexual Development, 2022, 16, 329-341.	1.1	3
3	NANOS3 suppresses premature spermatogonial differentiation to expand progenitors and fine-tunes spermatogenesis in mice. Biology Open, 2022, 11, .	0.6	1
4	A cooperative mechanism of target RNA selection via germ-cell-specific RNA-binding proteins NANOS2 and DND1. Cell Reports, 2022, 39, 110894.	2.9	4
5	Decoding the transcriptome of pre-granulosa cells during the formation of primordial follicles in the mouse. Biology of Reproduction, 2021, 105, 179-191.	1.2	6
6	NANOS2 suppresses the cell cycle by repressing mTORC1 activators in embryonic male germ cells. IScience, 2021, 24, 102890.	1.9	14
7	Cleaved Delta like 1 intracellular domain regulates neural development via Notch signal-dependent and -independent pathways. Development (Cambridge), 2021, 148, .	1.2	3
8	Formal proof of the requirement of MESP1 and MESP2 in mesoderm specification and their transcriptional control via specific enhancers in mice. Development (Cambridge), 2021, 148, .	1.2	12
9	Genetic and structural analysis of the in vivo functional redundancy between murine NANOS2 and NANOS3. Development (Cambridge), 2020, 148, .	1.2	8
10	The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nature Communications, 2020, 11, 5701.	5.8	208
11	Mouse dead end1 acts with Nanos2 and Nanos3 to regulate testicular teratoma incidence. PLoS ONE, 2020, 15, e0232047.	1.1	14
12	Mouse dead end1 acts with Nanos2 and Nanos3 to regulate testicular teratoma incidence. , 2020, 15, e0232047.		0
13	Mouse dead end1 acts with Nanos2 and Nanos3 to regulate testicular teratoma incidence. , 2020, 15, e0232047.		0
14	Mouse dead end1 acts with Nanos2 and Nanos3 to regulate testicular teratoma incidence. , 2020, 15, e0232047.		0
15	Mouse dead end1 acts with Nanos2 and Nanos3 to regulate testicular teratoma incidence. , 2020, 15, e0232047.		0
16	Endocardium differentiation through Sox17 expression in endocardium precursor cells regulates heart development in mice. Scientific Reports, 2019, 9, 11953.	1.6	23
17	ES-mediated chimera analysis revealed requirement of DDX6 for NANOS2 localization and function in mouse germ cells. Scientific Reports, 2019, 9, 515.	1.6	11
18	ELAVL2â€directed RNA regulatory network drives the formation of quiescent primordial follicles. EMBO Reports, 2019, 20, e48251.	2.0	28

Υυμικό Saga

#	Article	IF	CITATIONS
19	Essential role of mouse Dead end1 in the maintenance of spermatogonia. Developmental Biology, 2019, 445, 103-112.	0.9	26
20	NANOS2 acts as an intrinsic regulator of gonocytes-to-spermatogonia transition in the murine testes. Mechanisms of Development, 2018, 149, 27-40.	1.7	12
21	An adjustment in BMP4 function represents a treatment for diabetic nephropathy and podocyte injury. Scientific Reports, 2018, 8, 13011.	1.6	13
22	Requirement of the $3\hat{a}\in^2$ -UTR-dependent suppression of DAZL in oocytes for pre-implantation mouse development. PLoS Genetics, 2018, 14, e1007436.	1.5	19
23	Ripply2 recruits proteasome complex for Tbx6 degradation to define segment border during murine somitogenesis. ELife, 2018, 7, .	2.8	9
24	NEDD4 controls spermatogonial stem cell homeostasis and stress response by regulating messenger ribonucleoprotein complexes. Nature Communications, 2017, 8, 15662.	5.8	18
25	Roles of MIWI, MILI and PLD6 in small RNA regulation in mouse growing oocytes. Nucleic Acids Research, 2017, 45, gkx027.	6.5	46
26	Gonocytes-to-spermatogonia transition initiates prior to birth in murine testes and it requires FGF signaling. Mechanisms of Development, 2017, 144, 125-139.	1.7	38
27	Sfrp5 identifies murine cardiac progenitors for all myocardial structures except for the right ventricle. Nature Communications, 2017, 8, 14664.	5.8	19
28	Pofut1 point-mutations that disrupt O-fucosyltransferase activity destabilize the protein and abolish Notch1 signaling during mouse somitogenesis. PLoS ONE, 2017, 12, e0187248.	1.1	14
29	The Transcription Factor Hand1 Is Involved In Runx2-Ihh-Regulated Endochondral Ossification. PLoS ONE, 2016, 11, e0150263.	1.1	15
30	Dead end1 is an essential partner of <scp>NANOS</scp> 2 for selective binding of target <scp>RNA</scp> s in male germ cell development. EMBO Reports, 2016, 17, 37-46.	2.0	75
31	GBIQ: a non-arbitrary, non-biased method for quantification of fluorescent images. Scientific Reports, 2016, 6, 26454.	1.6	3
32	Sall1 transiently marks undifferentiated heart precursors and regulates their fate. Journal of Molecular and Cellular Cardiology, 2016, 92, 158-162.	0.9	23
33	Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors. Cell Reports, 2016, 15, 210-218.	2.9	514
34	Transcriptomic analyses of Hand2 transgenic embryos. Genomics Data, 2016, 9, 60-62.	1.3	0
35	Transport of the outer dynein arm complex to cilia requires a cytoplasmic protein Lrrc6. Genes To Cells, 2016, 21, 728-739.	0.5	32
36	A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons. Scientific Reports, 2016, 6, 23969.	1.6	13

ΥUMIKO SAGA

#	Article	IF	CITATIONS
37	Specification of jaw identity by the Hand2 transcription factor. Scientific Reports, 2016, 6, 28405.	1.6	21
38	Dazl is a target RNA suppressed by mammalian NANOS2 in sexually differentiating male germ cells. Nature Communications, 2016, 7, 11272.	5.8	37
39	Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming. PLoS Biology, 2016, 14, e1002553.	2.6	23
40	SMAD2 and p38 signaling pathways act in concert to determine XY primordial germ cell fate in mice. Development (Cambridge), 2015, 142, 575-586.	1.2	31
41	RNA Binding Protein Nanos2 Organizes Post-transcriptional Buffering System to Retain Primitive State of Mouse Spermatogonial Stem Cells. Developmental Cell, 2015, 34, 96-107.	3.1	63
42	Segmental border is defined by Ripply2-mediated Tbx6 repression independent of Mesp2. Developmental Biology, 2015, 400, 105-117.	0.9	29
43	FGF8-FGFR1 Signaling Acts as a Niche Factor for Maintaining Undifferentiated Spermatogonia in the Mouse1. Biology of Reproduction, 2014, 91, 145.	1.2	34
44	Interaction of NANOS2 and NANOS3 with different components of the CNOT complex may contribute to the functional differences in mouse male germ cells. Biology Open, 2014, 3, 1207-1216.	0.6	27
45	CYP26B1 promotes male germ cell differentiation by suppressing STRA8-dependent meiotic and STRA8-independent mitotic pathways. Developmental Biology, 2014, 389, 173-181.	0.9	43
46	NANOS2 promotes male germ cell development independent of meiosis suppression. Developmental Biology, 2014, 385, 32-40.	0.9	56
47	MEK/ERK signaling directly and indirectly contributes to the cyclical self-renewal of spermatogonial stem cells. Stem Cells, 2013, 31, 2517-2527.	1.4	81
48	Nodal/activin signaling promotes male germ cell fate and suppresses female programming in somatic cells. Development (Cambridge), 2013, 140, 291-300.	1.2	60
49	Notch Signaling in Sertoli Cells Regulates Cyclical Gene Expression of Hes1 but Is Dispensable for Mouse Spermatogenesis. Molecular and Cellular Biology, 2012, 32, 206-215.	1.1	38
50	Retinoic acid signaling in Sertoli cells regulates organization of the blood-testis barrier through cyclical changes in gene expression. Development (Cambridge), 2012, 139, 4347-4355.	1.2	91
51	The Synchrony and Cyclicity of Developmental Events. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008201-a008201.	2.3	15
52	The mechanism of somite formation in mice. Current Opinion in Genetics and Development, 2012, 22, 331-338.	1.5	75
53	NANOS2 Acts Downstream of Glial Cell Line-Derived Neurotrophic Factor Signaling to Suppress Differentiation of Spermatogonial Stem Cells. Stem Cells, 2012, 30, 280-291.	1.4	79
54	Interaction between NANOS2 and the CCR4-NOT Deadenylation Complex Is Essential for Male Germ Cell Development in Mouse. PLoS ONE, 2012, 7, e33558.	1.1	74

ΥUMIKO SAGA

#	Article	IF	CITATIONS
55	The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis. Development (Cambridge), 2011, 138, 55-64.	1.2	39
56	Function of Nanos2 in the male germ cell lineage in mice. Cellular and Molecular Life Sciences, 2010, 67, 3815-3822.	2.4	49
57	NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3594-3599.	3.3	132
58	Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite. Developmental Biology, 2010, 342, 134-145.	0.9	55
59	The RNA-Binding Protein NANOS2 Is Required to Maintain Murine Spermatogonial Stem Cells. Science, 2009, 325, 1394-1398.	6.0	271
60	The heterogeneity of spermatogonia is revealed by their topology and expression of marker proteins including the germ cell-specific proteins Nanos2 and Nanos3. Developmental Biology, 2009, 336, 222-231.	0.9	177
61	Sexual development of mouse germ cells: Nanos2 promotes the male germ cell fate by suppressing the female pathway. Development Growth and Differentiation, 2008, 50, S141-7.	0.6	14
62	Identification of presomitic mesoderm (PSM)-specific Mesp1 enhancer and generation of a PSM-specific Mesp1/Mesp2-null mouse using BAC-based rescue technology. Mechanisms of Development, 2008, 125, 432-440.	1.7	24
63	Cell lineage in mammalian craniofacial mesenchyme. Mechanisms of Development, 2008, 125, 797-808.	1.7	312
64	Nanos3 maintains the germ cell lineage in the mouse by suppressing both Bax-dependent and -independent apoptotic pathways. Developmental Biology, 2008, 318, 133-142.	0.9	112
65	Mouse germ cell development during embryogenesis. Current Opinion in Genetics and Development, 2008, 18, 337-341.	1.5	60
66	Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis. Development (Cambridge), 2008, 135, 2555-2562.	1.2	95
67	Differential contributions of Mesp1 and Mesp2 to the epithelialization and rostro-caudal patterning of somites. Development (Cambridge), 2008, 135, 3969-3969.	1.2	2
68	Functional importance of evolutionally conserved Tbx6 binding sites in the presomitic mesoderm-specific enhancer of Mesp2. Development (Cambridge), 2008, 135, 3511-3519.	1.2	35
69	Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes and Development, 2008, 22, 430-435.	2.7	247
70	Mesp-Family Genes Are Required for Segmental Patterning and Segmental Border Formation. Advances in Experimental Medicine and Biology, 2008, 638, 113-123.	0.8	3
71	The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Development (Cambridge), 2007, 134, 1561-1569.	1.2	93
72	Appropriate suppression of Notch signaling by Mesp factors is essential for stripe pattern formation leading to segment boundary formation. Developmental Biology, 2007, 304, 593-603.	0.9	34

Υυμικό Saga

#	Article	IF	CITATIONS
73	Segmental border is defined by the key transcription factor Mesp2, by means of the suppression of notch activity. Developmental Dynamics, 2007, 236, 1450-1455.	0.8	35
74	Functional redundancy among Nanos proteins and a distinct role of Nanos2 during male germ cell development. Development (Cambridge), 2007, 134, 77-83.	1.2	124
75	Implication of nanos2-3′UTR in the expression and function of nanos2. Mechanisms of Development, 2006, 123, 440-449.	1.7	30
76	Cooperative Mesp activity is required for normal somitogenesis along the anterior–posterior axis. Developmental Biology, 2006, 300, 687-698.	0.9	39
77	Transgenic analysis of the medaka mesp-b enhancer in somitogenesis. Development Growth and Differentiation, 2006, 48, 153-168.	0.6	19
78	Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3651-3656.	3.3	121
79	The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature, 2005, 435, 354-359.	13.7	223
80	Differential contributions of Mesp1 and Mesp2 to the epithelialization and rostro-caudal patterning of somites. Development (Cambridge), 2005, 132, 787-796.	1.2	40
81	Somite Segmentation: A View from Fish. Molecular Aspects of Fish and Marine Biology, 2004, , 261-293.	0.2	0
82	nanos1: a mouse nanos gene expressed in the central nervous system is dispensable for normal development. Mechanisms of Development, 2003, 120, 721-731.	1.7	85
83	Conserved Role of nanos Proteins in Germ Cell Development. Science, 2003, 301, 1239-1241.	6.0	529
84	Feedback loops comprising Dll1, Dll3 and Mesp2, and differential involvement of Psen1 are essential for rostrocaudal patterning of somites. Development (Cambridge), 2003, 130, 4259-4268.	1.2	84
85	Transcriptional regulation of Mesp1 and Mesp2 genes: differential usage of enhancers during development. Mechanisms of Development, 2001, 108, 59-69.	1.7	47
86	The making of the somite: molecular events in vertebrate segmentation. Nature Reviews Genetics, 2001, 2, 835-845.	7.7	254
87	Mesp2 initiates somite segmentation through the Notch signalling pathway. Nature Genetics, 2000, 25, 390-396.	9.4	197
88	Mesp1 Expression Is the Earliest Sign of Cardiovascular Development. Trends in Cardiovascular Medicine, 2000, 10, 345-352.	2.3	212
89	Genetic rescue of segmentation defect in MesP2-deficient mice by MesP1 gene replacement. Mechanisms of Development, 1998, 75, 53-66.	1.7	64
90	A Cooperative Mechanism of Target RNA Selection via Germ Cell-Specific RNA-Binding Proteins, NANOS2 and DND1. SSRN Electronic Journal, 0, , .	0.4	0