Jianxu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2011186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions. Journal of Hazardous Materials, 2022, 421, 126647.	12.4	32
2	Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques. Journal of Hazardous Materials, 2022, 422, 126808.	12.4	57
3	Stepwise redox changes alter the speciation and mobilization of phosphorus in hydromorphic soils. Chemosphere, 2022, 288, 132652.	8.2	16
4	Hazardous enrichment of toxic elements in soils and olives in the urban zone of Lavrio, Greece, a legacy, millennia-old silver/lead mining area and related health risk assessment. Journal of Hazardous Materials, 2022, 434, 128906.	12.4	20
5	Biogeochemical cycle of mercury and controlling technologies: Publications in critical reviews in environmental science & technology in the period of 2017–2021. Critical Reviews in Environmental Science and Technology, 2022, 52, 4325-4330.	12.8	9
6	lsotopic and Spectroscopic Investigation of Mercury Accumulation in <i>Houttuynia cordata</i> Colonizing Historically Contaminated Soil. Environmental Science & Technology, 2022, 56, 7997-8007.	10.0	7
7	Reducing conditions increased the mobilisation and hazardous effects of arsenic in a highly contaminated gold mine spoil. Journal of Hazardous Materials, 2022, 436, 129238.	12.4	7
8	Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. Journal of Hazardous Materials, 2021, 403, 124027.	12.4	111
9	Significant mercury efflux from a Karst region in Southwest China - Results from mass balance studies in two catchments. Science of the Total Environment, 2021, 769, 144892.	8.0	7
10	Mobilization, Methylation, and Demethylation of Mercury in a Paddy Soil Under Systematic Redox Changes. Environmental Science & Technology, 2021, 55, 10133-10141.	10.0	44
11	Redox-induced mobilization of phosphorus in groundwater affected arable soil profiles. Chemosphere, 2021, 275, 129928.	8.2	17
12	Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environment International, 2021, 153, 106527.	10.0	61
13	Mass balance of nine trace elements in two karst catchments in southwest China. Science of the Total Environment, 2021, 786, 147504.	8.0	12
14	Mechanistic insights into the (im)mobilization of arsenic, cadmium, lead, and zinc in a multi-contaminated soil treated with different biochars. Environment International, 2021, 156, 106638.	10.0	61
15	Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere, 2020, 241, 124888.	8.2	33
16	(Im)mobilization and speciation of lead under dynamic redox conditions in a contaminated soil amended with pine sawdust biochar. Environment International, 2020, 135, 105376.	10.0	63
17	Mitigation of mercury accumulation in rice using rice hull-derived biochar as soil amendment: A field investigation. Journal of Hazardous Materials, 2020, 388, 121747.	12.4	64
18	Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms. Environmental Pollution, 2020, 265, 115001.	7.5	83

JIANXU WANG

#	Article	IF	CITATIONS
19	Nanoactivated Carbon Reduces Mercury Mobility and Uptake by <i>Oryza sativa L</i> : Mechanistic Investigation Using Spectroscopic and Microscopic Techniques. Environmental Science & Technology, 2020, 54, 2698-2706.	10.0	45
20	Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk. Environmental Pollution, 2020, 261, 114116.	7.5	80
21	Screening of native low mercury accumulation crops in a mercury-polluted mining region: Agricultural planning to manage mercury risk in farming communities. Journal of Cleaner Production, 2020, 262, 121324.	9.3	30
22	Speciation and sorption of phosphorus in agricultural soil profiles of redoximorphic character. Environmental Geochemistry and Health, 2020, 42, 3231-3246.	3.4	20
23	The use of calcium carbonate-enriched clay minerals and diammonium phosphate as novel immobilization agents for mercury remediation: Spectral investigations and field applications. Science of the Total Environment, 2019, 646, 1615-1623.	8.0	50
24	Immobilization of mercury and arsenic in a mine tailing from a typical Carlin-type gold mining site in southwestern part of China. Journal of Cleaner Production, 2019, 240, 118171.	9.3	22
25	Methylmercury production in a paddy soil and its uptake by rice plants as affected by different geochemical mercury pools. Environment International, 2019, 129, 461-469.	10.0	52
26	Sulfur-modified organoclay promotes plant uptake and affects geochemical fractionation of mercury in a polluted floodplain soil. Journal of Hazardous Materials, 2019, 371, 687-693.	12.4	29
27	Primary amino acids affect the distribution of methylmercury rather than inorganic mercury among tissues of two farmed-raised fish species. Chemosphere, 2019, 225, 320-328.	8.2	18
28	Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay. Environmental Pollution, 2019, 248, 1059-1066.	7.5	27
29	Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. Journal of Environmental Management, 2019, 237, 5-14.	7.8	56
30	Spectral insight into thiosulfate-induced mercury speciation transformation in a historically polluted soil. Science of the Total Environment, 2019, 657, 938-944.	8.0	14
31	Biochar as an (Im)mobilizing Agent for the Potentially Toxic Elements in Contaminated Soils. , 2019, , 255-274.		13
32	Biowastes alone and combined with sulfur affect the phytoavailability of Cu and Zn to barnyard grass and sorghum in a fluvial alkaline soil under dry and wet conditions. Journal of Environmental Management, 2019, 234, 440-447.	7.8	11
33	A pilot study on using biochars as sustainable amendments to inhibit rice uptake of Hg from a historically polluted soil in a Karst region of China. Ecotoxicology and Environmental Safety, 2019, 170, 18-24.	6.0	55
34	Potentially toxic elements in saltmarsh sediments and common reed (Phragmites australis) of Burullus coastal lagoon at North Nile Delta, Egypt: A survey and risk assessment. Science of the Total Environment, 2019, 649, 1237-1249.	8.0	53
35	Chemically-assisted phytoextraction from metal(loid)s-polluted soil at a typical carlin-type gold mining area in southwest China. Journal of Cleaner Production, 2018, 189, 612-619.	9.3	25

Phytoextraction of Mercury-Contaminated Soil. , 2018, , 499-507.

JIANXU WANG

#	Article	IF	CITATIONS
37	Biogenesis of Mercury–Sulfur Nanoparticles in Plant Leaves from Atmospheric Gaseous Mercury. Environmental Science & Technology, 2018, 52, 3935-3948.	10.0	75
38	Thiosulphate-induced phytoextraction of mercury in Brassica juncea: Spectroscopic investigations to define a mechanism for Hg uptake. Environmental Pollution, 2018, 242, 986-993.	7.5	30
39	Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction. Journal of Environmental Management, 2017, 186, 233-239.	7.8	41
40	Heavy metal(loid) pollution in mine wastes of a Carlin-type gold mine in southwestern Guizhou, China and its environmental impacts. Diqiu Huaxue, 2015, 34, 311-319.	0.5	5
41	Effect of cropping systems on heavy metal distribution and mercury fractionation in the Wanshan mining district, China: Implications for environmental management. Environmental Toxicology and Chemistry, 2014, 33, 2147-2155.	4.3	10
42	Thiosulphate-induced mercury accumulation by plants: metal uptake and transformation of mercury fractionation in soil - results from a field study. Plant and Soil, 2014, 375, 21-33.	3.7	39
43	Localization and Speciation of Mercury in Brown Rice with Implications for Pan-Asian Public Health. Environmental Science & Technology, 2014, 48, 7974-7981.	10.0	120
44	Mercury speciation and mobility in mine wastes from mercury mines in China. Environmental Science and Pollution Research, 2013, 20, 8374-8381.	5.3	24
45	Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China. Chemical Geology, 2013, 336, 72-79.	3.3	115
46	Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan Mercury Mine, SW China. Chemical Geology, 2013, 336, 80-86.	3.3	85
47	Metallogeny and environmental impact of Hg in Zn deposits in China. Applied Geochemistry, 2012, 27, 151-160.	3.0	23
48	Implications of Mercury Speciation in Thiosulfate Treated Plants. Environmental Science & Technology, 2012, 46, 5361-5368.	10.0	72
49	Remediation of mercury contaminated sites – A review. Journal of Hazardous Materials, 2012, 221-222, 1-18.	12.4	214
50	Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan province, China. Applied Geochemistry, 2011, 26, 160-166.	3.0	96
51	Mercury distribution in the soil–plant–air system at the Wanshan mercury mining district in Guizhou, Southwest China. Environmental Toxicology and Chemistry, 2011, 30, 2725-2731.	4.3	32
52	Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil – Results from a greenhouse study. Journal of Hazardous Materials, 2011, 186, 119-127.	12.4	94
53	Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry and Physics, 2010, 10, 2425-2437.	4.9	161