
Michal Pravenec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2010981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cap analysis of gene expression reveals alternative promoter usage in a rat model of hypertension. Life Science Alliance, 2022, 5, e202101234.	2.8	0
2	Genetic Complementation of ATP Synthase Deficiency Due to Dysfunction of TMEM70 Assembly Factor in Rat. Biomedicines, 2022, 10, 276.	3.2	2
3	Sodium Accumulation and Blood Capillary Rarefaction in the Skin Predispose Spontaneously Hypertensive Rats to Salt Sensitive Hypertension. Biomedicines, 2022, 10, 376.	3.2	4
4	Beyond Genes: Inclusion of Alternative Splicing and Alternative Polyadenylation to Assess the Genetic Architecture of Predisposition to Voluntary Alcohol Consumption in Brain of the HXB/BXH Recombinant Inbred Rat Panel. Frontiers in Genetics, 2022, 13, 821026.	2.3	2
5	Will Food and Drug Administration Guidance to Reduce the Salt Content of Processed Foods Reduce Salt Intake and Save Lives?. Hypertension, 2022, 79, 809-812.	2.7	4
6	Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose. PLoS Genetics, 2022, 18, e1009638.	3.5	3
7	Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clinical Science, 2022, 136, 599-620.	4.3	9
8	Hepatic Transcriptome Profiling Reveals Lack of Acsm3 Expression in Polydactylous Rats with High-Fat Diet-Induced Hypertriglyceridemia and Visceral Fat Accumulation. Nutrients, 2021, 13, 1462.	4.1	6
9	Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility. BMC Biology, 2021, 19, 86.	3.8	12
10	No evidence of racial disparities in blood pressure salt sensitivity when potassium intake exceeds levels recommended in the US dietary guidelines. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1903-H1918.	3.2	15
11	A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion. Genome Biology, 2021, 22, 191.	8.8	4
12	Excess ischemic tachyarrhythmias trigger protection against myocardial infarction in hypertensive rats. Clinical Science, 2021, 135, 2143-2163.	4.3	1
13	High Cysteine Diet Reduces Insulin Resistance in SHR-CRP Rats. Physiological Research, 2021, 70, 687-700.	0.9	2
14	Strategies Are Needed to Prevent Salt-Induced Hypertension That Do Not Depend on Reducing Salt Intake. American Journal of Hypertension, 2020, 33, 116-118.	2.0	6
15	Downregulation of the Glo1 Gene Is Associated with Reduced Adiposity and Ectopic Fat Accumulation in Spontaneously Hypertensive Rats. Antioxidants, 2020, 9, 1179.	5.1	5
16	Effect of metformin on the progression of post-ischemic heart failure in transgenic spontaneously hypertensive rats expressing human C-reactive protein. Journal of Molecular and Cellular Cardiology, 2020, 140, 7-8.	1.9	0
17	WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nature Communications, 2019, 10, 3616.	12.8	44
18	Small Amounts of Inorganic Nitrate or Beetroot Provide Substantial Protection From Salt-Induced Increases in Blood Pressure. Hypertension, 2019, 73, 1042-1048.	2.7	17

#	Article	IF	CITATIONS
19	Cardioprotective Regimen of Adaptation to Chronic Hypoxia Diversely Alters Myocardial Gene Expression in SHR and SHR-mtBN Conplastic Rat Strains. Frontiers in Endocrinology, 2019, 9, 809.	3.5	7
20	VERY SMALL AMOUNTS OF INORGANIC NITRATE OR BEETROOT PROVIDE SUBSTANTIAL PROTECTION FROM SALT-INDUCED INCREASES IN BLOOD PRESSURE. Journal of Hypertension, 2019, 37, e123.	0.5	0
21	Ethnicity-Specific Skeletal Muscle Transcriptional Signatures and Their Relevance to Insulin Resistance in Singapore. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 465-486.	3.6	4
22	Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity. Hypertension Research, 2019, 42, 6-18.	2.7	14
23	Transgenic overexpression of glutathione S-transferase μ-type 1 reduces hypertension and oxidative stress in the stroke-prone spontaneously hypertensive rat. Journal of Hypertension, 2019, 37, 985-996.	0.5	7
24	The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension. Current Opinion in Nephrology and Hypertension, 2018, 27, 83-92.	2.0	30
25	Nrf2-Mediated Antioxidant Defense and Peroxiredoxin 6 Are Linked to Biosynthesis of Palmitic Acid Ester of 9-Hydroxystearic Acid. Diabetes, 2018, 67, 1190-1199.	0.6	52
26	Functional foods for augmenting nitric oxide activity and reducing the risk for salt-induced hypertension and cardiovascular disease in Japan. Journal of Cardiology, 2018, 72, 42-49.	1.9	13
27	β-Adrenergic signaling, monoamine oxidase A and antioxidant defence in the myocardium of SHR and SHR-mtBN conplastic rat strains: the effect of chronic hypoxia. Journal of Physiological Sciences, 2018, 68, 441-454.	2.1	5
28	Systems genetic analysis of brown adipose tissue function. Physiological Genomics, 2018, 50, 52-66.	2.3	11
29	P98Cardiac ischemic tolerance of spontaneously hypertensive rats with increased expression of C-reactive protein. Cardiovascular Research, 2018, 114, S26-S26.	3.8	0
30	Systems Genetics Approaches in Rat Identify Novel Genes and Gene Networks Associated With Cardiac Conduction. Journal of the American Heart Association, 2018, 7, e009243.	3.7	18
31	Testing Computer Models Predicting Human Responses to a High-Salt Diet. Hypertension, 2018, 72, 1407-1416.	2.7	17
32	The expression of connexin 37 gene in the aorta of rat models of dyslipidemia, hypertension and dicarbonyl stress. Atherosclerosis, 2018, 275, e183-e184.	0.8	0
33	Reply. Journal of Hypertension, 2018, 36, 703-704.	0.5	0
34	Changes in the activity of some metabolic enzymes in the heart of SHR rat incurred by transgenic expression of CD36. Journal of Physiology and Biochemistry, 2018, 74, 479-489.	3.0	3
35	Mitochondrial genome modulates myocardial Akt/Glut/HK salvage pathway in spontaneously hypertensive rats adapted to chronic hypoxia. Physiological Genomics, 2018, 50, 532-541.	2.3	8
36	Unsupervised, Statistically Based Systems Biology Approach for Unraveling the Genetics of Complex Traits: A Demonstration with Ethanol Metabolism. Alcoholism: Clinical and Experimental Research, 2018, 42, 1177-1191.	2.4	7

#	Article	IF	CITATIONS
37	Genetically Determined Folate Deficiency Is Associated With Abnormal Hepatic Folate Profiles in the Spontaneously Hypertensive Rat. Physiological Research, 2018, 67, 417-422.	0.9	1
38	Dissecting the Role of Folr1 and Folh1 Genes in the Pathogenesis of Metabolic Syndrome in Spontaneously Hypertensive Rats. Physiological Research, 2018, 67, 657-662.	0.9	6
39	Acute Toxic Effects of Telmisartan in Spontaneously Hypertensive Rats Fed a High Fructose Diet. Physiological Research, 2018, 67, 851-856.	0.9	2
40	Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat. DMM Disease Models and Mechanisms, 2017, 10, 297-306.	2.4	13
41	Downregulation of <i>Plzf</i> Gene Ameliorates Metabolic and Cardiac Traits in the Spontaneously Hypertensive Rat. Hypertension, 2017, 69, 1084-1091.	2.7	41
42	An Appraisal of Methods Recently Recommended for Testing Salt Sensitivity of Blood Pressure. Journal of the American Heart Association, 2017, 6, .	3.7	44
43	Selective replacement of mitochondrial DNA increases the cardioprotective effect of chronic continuous hypoxia in spontaneously hypertensive rats. Clinical Science, 2017, 131, 865-881.	4.3	19
44	Autocrine effects of transgenic resistin on brown adipose tissue glucose and lipid metabolism. Atherosclerosis, 2017, 263, e71.	0.8	1
45	The American Heart Association Scientific Statement on salt sensitivity of blood pressure. Journal of Hypertension, 2017, 35, 2214-2225.	0.5	28
46	Salsalate ameliorates metabolic disturbances by reducing inflammation in spontaneously hypertensive rats expressing human C-reactive protein and by activating brown adipose tissue in nontransgenic controls. PLoS ONE, 2017, 12, e0179063.	2.5	6
47	Connexin 50 Mutation Lowers Blood Pressure in Spontaneously Hypertensive Rat. Physiological Research, 2017, 66, 15-28.	0.9	8
48	Mutant Wars2 Gene in Spontaneously Hypertensive Rats Impairs Brown Adipose Tissue Function and Predisposes to Visceral Obesity. Physiological Research, 2017, 66, 917-924.	0.9	21
49	Effects of Metformin on Tissue Oxidative and Dicarbonyl Stress in Transgenic Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein. PLoS ONE, 2016, 11, e0150924.	2.5	21
50	Alterations in the cardiac proteome of the spontaneously hypertensive rat induced by transgenic expression of CD36. Journal of Proteomics, 2016, 145, 177-186.	2.4	9
51	Comparative effect of silymarin and silybin treatment on inflammation and oxidative stress in transgenic spontaneously hypertensive rats overexpressing human C-reactive protein. Atherosclerosis, 2016, 252, e220.	0.8	1
52	Transgenic overexpression of the Nrf2 ameliorates insulin resistance and changes fatty acids in membrane phospholipids in spontaneously hypertensive rats. Atherosclerosis, 2016, 252, e146.	0.8	0
53	Uncovering the liver's role in immunity through RNA co-expression networks. Mammalian Genome, 2016, 27, 469-484.	2.2	12
54	An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney International, 2016, 90, 965-973.	5.2	32

#	Article	IF	CITATIONS
55	Wars2 is a determinant of angiogenesis. Nature Communications, 2016, 7, 12061.	12.8	45
56	Splicing mutation in Sbf1 causes nonsyndromic male infertility in the rat. Reproduction, 2016, 152, 215-223.	2.6	7
57	Autocrine effects of transgenic resistin reduce palmitate and glucose oxidation in brown adipose tissue. Physiological Genomics, 2016, 48, 420-427.	2.3	4
58	Genetic Variation in Renal Expression of <i>Folate Receptor 1</i> (<i>Folr1</i>) Gene Predisposes Spontaneously Hypertensive Rats to Metabolic Syndrome. Hypertension, 2016, 67, 335-341.	2.7	14
59	Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model. PLoS ONE, 2016, 11, e0152708.	2.5	8
60	Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis. PLoS ONE, 2016, 11, e0155832.	2.5	6
61	Targeting of the Plzf Gene in the Rat by Transcription Activator-Like Effector Nuclease Results in Caudal Regression Syndrome in Spontaneously Hypertensive Rats. PLoS ONE, 2016, 11, e0164206.	2.5	13
62	Hepatotoxic Effects of Fenofibrate in Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein. Physiological Research, 2016, 65, 891-899.	0.9	10
63	Effects of Transgenic Expression of Dopamine Beta Hydroxylase (Dbh) Gene on Blood Pressure in Spontaneously Hypertensive Rats. Physiological Research, 2016, 65, 1039-1044.	0.9	3
64	GW26-e2423 The role of mutant Plzf in metabolic and hemodynamic disturbances in spontaneously hypertensive rats. Journal of the American College of Cardiology, 2015, 66, C274-C275.	2.8	0
65	Translational regulation shapes the molecular landscape of complex disease phenotypes. Nature Communications, 2015, 6, 7200.	12.8	79
66	Lipid-lowering and antioxidant effect of metformin in spontaneously hypertensive rats expressing human c-reactive protein. Atherosclerosis, 2015, 241, e207.	0.8	0
67	Molecular-Based Mechanisms of Mendelian Forms of Salt-Dependent Hypertension. Hypertension, 2015, 65, 932-941.	2.7	40
68	histoneHMM: Differential analysis of histone modifications with broad genomic footprints. BMC Bioinformatics, 2015, 16, 60.	2.6	28
69	Rosuvastatin Ameliorates Inflammation, Renal Fat Accumulation, and Kidney Injury in Transgenic Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein. Physiological Research, 2015, 64, 295-301.	0.9	4
70	Gender-Related Effects on Substrate Utilization and Metabolic Adaptation in Hairless Spontaneously Hypertensive Rat. Physiological Research, 2015, 64, 51-60.	0.9	6
71	Fumaric Acid Esters Can Block Pro-Inflammatory Actions of Human CRP and Ameliorate Metabolic Disturbances in Transgenic Spontaneously Hypertensive Rats. PLoS ONE, 2014, 9, e101906.	2.5	22
72	Genetic Analysis of the Cardiac Methylome at Single Nucleotide Resolution in a Model of Human Cardiovascular Disease. PLoS Genetics, 2014, 10, e1004813.	3.5	19

#	Article	IF	CITATIONS
73	P658Adaptation to continuous normobaric hypoxia affects mitochondrial enzymes in spontaneously hypertensive rat hearts. Cardiovascular Research, 2014, 103, S120.2-S120.	3.8	0
74	Effects of mtDNA in SHR-mt ^{F344} versus SHR conplastic strains on reduced OXPHOS enzyme levels, insulin resistance, cardiac hypertrophy, and systolic dysfunction. Physiological Genomics, 2014, 46, 671-678.	2.3	18
75	Rosuvastatin Can Block Proâ€Inflammatory Actions of Transgenic Human <scp>C</scp> â€Reactive Protein Without Reducing its Circulating Levels. Cardiovascular Therapeutics, 2014, 32, 59-65.	2.5	10
76	Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nature Protocols, 2014, 9, 773-793.	12.0	57
77	Plzf as a Candidate Gene Predisposing the Spontaneously Hypertensive Rat to Hypertension, Left Ventricular Hypertrophy, and Interstitial Fibrosis. American Journal of Hypertension, 2014, 27, 99-106.	2.0	25
78	Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nature Protocols, 2014, 9, 810-827.	12.0	67
79	Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Research, 2014, 24, 942-953.	5.5	53
80	Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nature Protocols, 2014, 9, 794-809.	12.0	62
81	P446Myocardial ischemic tolerance and expression of selected genes in spontaneously hypertensive rats adapted to chronic continuous hypoxia. Cardiovascular Research, 2014, 103, S82.2-S82.	3.8	0
82	Fumaric acid esters can block pro-inflammatory actions of human CRP and ameliorate metabolic disturbances in transgenic spontaneously hypertensive rats. Atherosclerosis, 2014, 235, e268.	0.8	1
83	Adaptation to chronic hypoxia improves cardiac ischemic tolerance in spontaneously hypertensive rats (1080.3). FASEB Journal, 2014, 28, 1080.3.	0.5	0
84	Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats. Pflugers Archiv European Journal of Physiology, 2013, 465, 1477-1486.	2.8	9
85	Mapping genetic determinants of coronary microvascular remodeling in the spontaneously hypertensive rat. Basic Research in Cardiology, 2013, 108, 316.	5.9	26
86	MicroRNA-22 and promoter motif polymorphisms at the Chga locus in genetic hypertension: functional and therapeutic implications for gene expression and the pathogenesis of hypertension. Human Molecular Genetics, 2013, 22, 3624-3640.	2.9	46
87	Transposonâ€mediated transgenesis, transgenic rescue, and tissueâ€specific gene expression in rodents and rabbits. FASEB Journal, 2013, 27, 930-941.	0.5	86
88	Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans. Cardiovascular Research, 2013, 97, 653-665.	3.8	31
89	Folate Deficiency Is Associated With Oxidative Stress, Increased Blood Pressure, and Insulin Resistance in Spontaneously Hypertensive Rats. American Journal of Hypertension, 2013, 26, 135-140.	2.0	76
90	Tissue-Specific Peroxisome Proliferator Activated Receptor Gamma Expression and Metabolic Effects of Telmisartan. American Journal of Hypertension, 2013, 26, 829-835.	2.0	9

#	Article	IF	CITATIONS
91	CD36 overexpression predisposes to arrhythmias but reduces infarct size in spontaneously hypertensive rats: gene expression profile analysis. Physiological Genomics, 2012, 44, 173-182.	2.3	19
92	Nonsynonymous variants in mt-Nd2, mt-Nd4, and mt-Nd5 are linked to effects on oxidative phosphorylation and insulin sensitivity in rat conplastic strains. Physiological Genomics, 2012, 44, 487-494.	2.3	25
93	Genetic basis of transcriptome differences between the founder strains of the rat HXB/BXH recombinant inbred panel. Genome Biology, 2012, 13, r31.	9.6	32
94	Effect of Cd36 on cardiac ischemic tolerance and adrenergic signaling in spontaneously hypertensive rats. FASEB Journal, 2012, 26, 1136.9.	0.5	0
95	Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature, 2011, 478, 114-118.	27.8	135
96	Role of FAT/CD36 in novel PKC isoform activation in heart of spontaneously hypertensive rats. Molecular and Cellular Biochemistry, 2011, 357, 163-169.	3.1	7
97	Effects of Human C-Reactive Protein on Pathogenesis of Features of the Metabolic Syndrome. Hypertension, 2011, 57, 731-737.	2.7	61
98	Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat. Physiological Genomics, 2011, 43, 1207-1218.	2.3	26
99	Age-related autocrine diabetogenic effects of transgenic resistin in spontaneously hypertensive rats: gene expression profile analysis. Physiological Genomics, 2011, 43, 372-379.	2.3	6
100	Rodent Transgenesis Mediated by a Novel Hyperactive Sleeping Beauty Transposon System. Methods in Molecular Biology, 2011, 738, 87-99.	0.9	11
101	Recent Advances in Genetics of the Spontaneously Hypertensive Rat. Current Hypertension Reports, 2010, 12, 5-9.	3.5	37
102	Increased liver oxidative stress and altered PUFA metabolism precede development of non-alcoholic steatohepatitis in SREBP-1a transgenic spontaneously hypertensive rats with genetic predisposition to hepatic steatosis. Molecular and Cellular Biochemistry, 2010, 335, 119-125.	3.1	25
103	A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature, 2010, 467, 460-464.	27.8	271
104	Effect of telmisartan on selected adipokines, insulin sensitivity, and substrate utilization during insulin-stimulated conditions in patients with metabolic syndrome and impaired fasting glucose. European Journal of Endocrinology, 2010, 163, 573-583.	3.7	14
105	Genetic regulation of catecholamine synthesis, storage and secretion in the spontaneously hypertensive rat. Human Molecular Genetics, 2010, 19, 2567-2580.	2.9	25
106	New Insights into the Genetic Control of Gene Expression using a Bayesian Multi-tissue Approach. PLoS Computational Biology, 2010, 6, e1000737.	3.2	55
107	The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. Genome Research, 2010, 20, 791-803.	5.5	84
108	Succinimidyl oleate, established inhibitor of CD36/FAT translocase inhibits complex III of mitochondrial respiratory chain. Biochemical and Biophysical Research Communications, 2010, 391, 1348-1351.	2.1	9

#	Article	IF	CITATIONS
109	Generation of Rat "Supersonic―Congenic/Conplastic Strains Using Superovulation and Embryo Transfer. Methods in Molecular Biology, 2010, 597, 267-275.	0.9	8
110	Use of Rat Genomics for Investigating the Metabolic Syndrome. Methods in Molecular Biology, 2010, 597, 415-426.	0.9	10
111	Genetic locus on rat chromosome 20 regulates diet-induced adipocyte hypertrophy: a microarray gene expression study. Physiological Genomics, 2009, 38, 63-72.	2.3	5
112	Dissection of Chromosome 18 Blood Pressure and Salt-Sensitivity Quantitative Trait Loci in the Spontaneously Hypertensive Rat. Hypertension, 2009, 54, 639-645.	2.7	17
113	Genetical genomic determinants of alcohol consumption in rats and humans. BMC Biology, 2009, 7, 70.	3.8	148
114	Long-term pioglitazone treatment enhances lipolysis in rat adipose tissue. International Journal of Obesity, 2008, 32, 1848-1853.	3.4	7
115	SNP and haplotype mapping for genetic analysis in the rat. Nature Genetics, 2008, 40, 560-566.	21.4	172
116	Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nature Genetics, 2008, 40, 546-552.	21.4	150
117	Distribution and functional impact of DNA copy number variation in the rat. Nature Genetics, 2008, 40, 538-545.	21.4	186
118	Progress and prospects in rat genetics: a community view. Nature Genetics, 2008, 40, 516-522.	21.4	265
119	Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nature Genetics, 2008, 40, 952-954.	21.4	97
120	FUNCTIONAL ANALYSIS OF PROTEIN VISFATIN USING RNA INTERFERENCE. Atherosclerosis Supplements, 2008, 9, 18.	1.2	0
121	Identification of Mutated Srebf1 as a QTL Influencing Risk for Hepatic Steatosis in the Spontaneously Hypertensive Rat. Hypertension, 2008, 51, 148-153.	2.7	31
122	Molecule-specific Effects of Angiotensin II-Receptor Blockers Independent of the Renin-Angiotensin System. American Journal of Hypertension, 2008, 21, 852-859.	2.0	26
123	Hemodynamic Characterization of Recombinant Inbred Strains: Twenty Years Later. Hypertension Research, 2008, 31, 1659-1668.	2.7	8
124	Telmisartan increases fatty acid oxidation in skeletal muscle through a peroxisome proliferator-activated receptor-1 ³ dependent pathway. Journal of Hypertension, 2008, 26, 1209-1215.	0.5	30
125	Insight into the genetics of hypertension, a core component of the metabolic syndrome. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 393-397.	2.5	10
126	Genome-Wide Co-Expression Analysis in Multiple Tissues. PLoS ONE, 2008, 3, e4033.	2.5	21

#	Article	IF	CITATIONS
127	Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Research, 2007, 17, 1319-1326.	5.5	78
128	Molecular Genetics of Experimental Hypertension and the Metabolic Syndrome. Hypertension, 2007, 49, 941-952.	2.7	42
129	Effect of acute hyperinsulinaemia with and without angiotensin II type 1 receptor blockade on resistin and adiponectin concentrations and expressions in healthy subjects. European Journal of Endocrinology, 2007, 157, 443-449.	3.7	15
130	PO22-700 TELMISARTAN COMPARED TO LOSARTAN AMELIORATES INSULIN RESISTANCE AND DYSLIPIDEMIA IN PD RATS. Atherosclerosis Supplements, 2007, 8, 187.	1.2	0
131	Th-W48:5 Prodiabetogenic effects of transgenic resistin in old spontaneously hypertensive rats. Atherosclerosis Supplements, 2006, 7, 463.	1.2	0
132	We-P11:123 Long-term effects of pioglitazone on cardiovascular risk factors in sucrose FED rats. Atherosclerosis Supplements, 2006, 7, 373.	1.2	0
133	Genetic relationship between placental and fetal weights and markers of the metabolic syndrome in rat recombinant inbred strains. Physiological Genomics, 2006, 26, 226-231.	2.3	23
134	Reply to "Normalization procedures and detection of linkage signal in genetical-genomics experiments― Nature Genetics, 2006, 38, 858-859.	21.4	3
135	Integrated gene expression profiling and linkage analysis in the rat. Mammalian Genome, 2006, 17, 480-489.	2.2	20
136	Heritability and Tissue Specificity of Expression Quantitative Trait Loci. PLoS Genetics, 2006, 2, e172.	3.5	183
137	Fat-specific transgenic expression of resistin in the spontaneously hypertensive rat impairs fatty acid re-esterification. International Journal of Obesity, 2006, 30, 1157-1159.	3.4	16
138	Telmisartan But Not Valsartan Increases Caloric Expenditure and Protects Against Weight Gain and Hepatic Steatosis. Hypertension, 2006, 47, 1003-1009.	2.7	141
139	Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics, 2005, 37, 243-253.	21.4	476
140	Genetic analysis of complex cardiovascular traits in the spontaneously hypertensive rat. Experimental Physiology, 2005, 90, 273-276.	2.0	13
141	A New Transgenic Rat Model of Hepatic Steatosis and the Metabolic Syndrome. Hypertension, 2005, 45, 1004-1011.	2.7	39
142	W11-0-002 Genetic and correlation analyses of a thrifty phenotype hypothesis in rat RI strains. Atherosclerosis Supplements, 2005, 6, 56.	1.2	0
143	CD36 Mediates the Phagocytosis ofPlasmodium falciparum–Infected Erythrocytes by Rodent Macrophages. Journal of Infectious Diseases, 2004, 189, 204-213.	4.0	127
144	Identification of Telmisartan as a Unique Angiotensin II Receptor Antagonist With Selective PPARÎ3–Modulating Activity. Hypertension, 2004, 43, 993-1002.	2.7	1,009

#	Article	IF	CITATIONS
145	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	21.4	1,034
146	A spontaneous mutation in the desmoglein 4 gene underlies hypotrichosis in a new lanceolate hair rat model. Differentiation, 2004, 72, 541-547.	1.9	29
147	Salt preference of congenic strains derived from the spontaneously hypertensive rat. Physiology and Behavior, 2004, 80, 617-622.	2.1	12
148	Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists. Journal of Hypertension, 2004, 22, 2253-2261.	0.5	172
149	IDENTIFICATION OF GENES DETERMINING THE DIET-INDUCED METABOLIC SYNDROME IN THE RAT. Journal of Hypertension, 2004, 22, S65.	0.5	1
150	Sequencing and chromosomal localization of Fabp6 and an intronless Fabp6 segment in the rat. Molecular Biology Reports, 2003, 30, 173-176.	2.3	8
151	Genetic map of AFLP markers in the rat (Rattus norvegicus) derived from the H x B/lpcv and B x H/Cub sets of recombinant inbred strains. Biochemical Genetics, 2003, 41, 77-89.	1.7	2
152	A new framework marker-based linkage map and SDPs for the Rat HXB/BXH strain set. Mammalian Genome, 2003, 14, 537-546.	2.2	15
153	The CD36 protein functions as an immunogenic domain of the RT8 alloantigen. International Journal of Immunogenetics, 2003, 30, 325-327.	1.2	3
154	Liver copper content of rats hypo- or hyperresponsive to dietary cholesterol. Journal of Trace Elements in Medicine and Biology, 2003, 17, 177-182.	3.0	4
155	Gene Expression Profiling in Hypertension Research. Hypertension, 2003, 41, 3-8.	2.7	51
156	TA Repeat Variation,Npr1Expression, and Blood Pressure. Hypertension, 2003, 41, 16-24.	2.7	19
157	Transgenic and Recombinant Resistin Impair Skeletal Muscle Glucose Metabolism in the Spontaneously Hypertensive Rat. Journal of Biological Chemistry, 2003, 278, 45209-45215.	3.4	98
158	Segment of Rat Chromosome 20 Regulates Diet-Induced Augmentations in Adiposity, Glucose Intolerance, and Blood Pressure. Hypertension, 2003, 41, 1047-1055.	2.7	23
159	Pharmacogenetic Evidence That Cd36Is a Key Determinant of the Metabolic Effects of Pioglitazone. Journal of Biological Chemistry, 2002, 277, 48501-48507.	3.4	55
160	Heart Rate and Blood Pressure Quantitative Trait Loci for the Airpuff Startle Reaction. Hypertension, 2002, 39, 348-352.	2.7	19
161	Identification and chromosomal localization of ecogenetic components of electrolyte excretion. Journal of Hypertension, 2002, 20, 209-217.	0.5	11
162	Genetic analysis of metabolic defects in the spontaneously hypertensive rat. Mammalian Genome, 2002, 13, 253-258.	2.2	12

#	Article	IF	CITATIONS
163	Genome scanning of the HXB/BXH sets of recombinant inbred strains of the rat for quantitative trait loci associated with conditioned taste aversion. Behavior Genetics, 2002, 32, 51-56.	2.1	15
164	Genetics of Cd36 and the hypertension metabolic syndrome. Seminars in Nephrology, 2002, 22, 148-153.	1.6	16
165	Genetic and Correlation Analysis of Hepatic Copper Content in the Rat. Biochemical and Biophysical Research Communications, 2001, 289, 1247-1251.	2.1	5
166	Genetic isolation of a blood pressure quantitative trait locus on chromosome 2 in the spontaneously hypertensive rat. Journal of Hypertension, 2001, 19, 1061-1064.	0.5	15
167	Identification of a mutation in ADD1/SREBP-1 in the spontaneously hypertensive rat. Mammalian Genome, 2001, 12, 295-298.	2.2	17
168	Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nature Genetics, 2001, 27, 156-158.	21.4	186
169	Defective Fatty Acid Uptake in the Spontaneously Hypertensive Rat Is a Primary Determinant of Altered Glucose Metabolism, Hyperinsulinemia, and Myocardial Hypertrophy. Journal of Biological Chemistry, 2001, 276, 23661-23666.	3.4	166
170	Workshop: Excess Growth and Apoptosis. Hypertension, 2001, 37, 760-766.	2.7	55
171	Y-Chromosome Transfer Induces Changes in Blood Pressure and Blood Lipids in SHR. Hypertension, 2001, 37, 1147-1152.	2.7	38
172	Mapping of quantitative trait loci (QTL) of differential stress gene expression in rat recombinant inbred strains. Journal of Hypertension, 2000, 18, 545-551.	0.5	35
173	Derivation of SHR-chromosome 4 congenic sublines for fine genetic mapping of quantitative trait loci with major effects on insulin resistance and blood pressure. Journal of Experimental Animal Science, 2000, 41, 44-46.	0.5	0
174	Genetics of rat hypodactyly. Journal of Experimental Animal Science, 2000, 41, 47-50.	0.5	2
175	Putative candidate genes for blood pressure control in the SHR.BN-RNO8 congenic substrains. Journal of Experimental Animal Science, 2000, 41, 51-53.	0.5	1
176	Genetic Analysis of Rat Chromosome 1 and the <i>Sa</i> Gene in Spontaneous Hypertension. Hypertension, 2000, 35, 225-230.	2.7	37
177	Contribution of Autosomal Loci and the Y Chromosome to the Stress Response in Rats. Hypertension, 2000, 35, 568-573.	2.7	31
178	Chromosomal Mapping of a Major Quantitative Trait Locus Regulating Compensatory Renal Growth in the Rat. Journal of the American Society of Nephrology: JASN, 2000, 11, 1261-1265.	6.1	7
179	Effect of Chromosome 19 Transfer on Blood Pressure in the Spontaneously Hypertensive Rat. Hypertension, 1999, 33, 256-260.	2.7	25
180	Genetic Isolation of a Chromosome 1 Region Affecting Susceptibility to Hypertension-Induced Renal Damage in the Spontaneously Hypertensive Rat. Hypertension, 1999, 34, 187-191.	2.7	47

#	Article	IF	CITATIONS
181	Mapping of quantitative trait loci for seminal vesicle mass and litter size to rat chromosome 8. Reproduction, 1999, 116, 329-333.	2.6	11
182	Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nature Genetics, 1999, 21, 76-83.	21.4	692
183	Report on rat chromosome 1. Journal of Experimental Animal Science, 1999, 40, 5-18.	0.5	2
184	Report on rat chromosome 8. Journal of Experimental Animal Science, 1999, 40, 69-76.	0.5	2
185	Transfer of the Y chromosome from the brown norway rat into the SHR induces significant decreases in blood pressure American Journal of Hypertension, 1999, 12, 16.	2.0	1
186	Congenic strains for genetic analysis of hypertension and dyslipidemia in the spontaneously hypertensive rat. Transplantation Proceedings, 1999, 31, 1555-1556.	0.6	8
187	Graft-versus-host disease in the rat: a genetic analysis in recombinant inbred strains of SHR × BN. Lx and BN. Lx × SHR sets. Transplantation Proceedings, 1999, 31, 1569-1570.	0.6	1
188	Rat congenic and recombinant inbred strains: a genetic model for the study of quantitative trait loci. Transplantation Proceedings, 1999, 31, 1592-1593.	0.6	5
189	Linkage mapping of rat hypodactyly locus to chromosome 10. Transplantation Proceedings, 1999, 31, 1620.	0.6	2
190	Contribution of the TNFÎ \pm gene region of rat chromosome 20 to the body temperature response to endotoxin. Transplantation Proceedings, 1999, 31, 1622-1623.	0.6	3
191	Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. Journal of Clinical Investigation, 1999, 103, 1651-1657.	8.2	99
192	Genetic dissection of testicular weight in the mouse with the BXD recombinant inbred strains. Mammalian Genome, 1998, 9, 503-505.	2.2	19
193	Newborn and adult recombinant inbred strains: A tool to search for genetic determinants of target organ damage in hypertension. Kidney International, 1998, 53, 1488-1492.	5.2	33
194	A Genetic and Correlation Analysis of Liver Cholesterol Concentration in Rat Recombinant Inbred Strains Fed a High Cholesterol Diet. Biochemical and Biophysical Research Communications, 1998, 246, 272-275.	2.1	13
195	Quantitative Trait Loci for Compensatory Renal Hypertrophy in the Mouse. Biochemical and Biophysical Research Communications, 1998, 248, 473-475.	2.1	6
196	Effect of Renin Gene Transfer on Blood Pressure in the Spontaneously Hypertensive Rat. Hypertension, 1998, 31, 373-377.	2.7	16
197	Genetic analysis of graft-versus-host disease using rat recombinant inbred strains. Transplantation Proceedings, 1997, 29, 1734-1735.	0.6	3
198	Rat genome mapping using recombinant inbred strains. Transplantation Proceedings, 1997, 29, 1768.	0.6	3

#	Article	IF	CITATIONS
199	Map of the differential segment of rat chromosome 8 in the SHR-Lx congenic strain. Transplantation Proceedings, 1997, 29, 1769.	0.6	1
200	Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nature Genetics, 1997, 16, 197-201.	21.4	138
201	Mapping genes controlling hematocrit in the spontaneously hypertensive rat. Mammalian Genome, 1997, 8, 387-389.	2.2	17
202	Linkage mapping of the cellular retinoic acid-binding protein 1 (Crabpl) gene to rat Chromosome 8. Mammalian Genome, 1997, 8, 455-456.	2.2	3
203	Linkage mapping of the mixed-lineage leukemia (Mll) gene to rat chromosome 8. Mammalian Genome, 1997, 8, 625-626.	2.2	2
204	Rat Chromosome 1: Regional localization of seven genes (Slc9a3, Srd5a1, Esr, Tcp1, Grik5, Tnnt3, Jak2) and anchoring of the genetic linkage map to the cytogenetic map. Mammalian Genome, 1997, 8, 657-660.	2.2	15
205	Linkage mapping of the Na-K-2C1 cotransporter gene (Slcl2a1) to rat chromosome 3. Mammalian Genome, 1997, 8, 379-379.	2.2	4
206	Genetic Isolation of a Chromosome 1 Region Affecting Blood Pressure in the Spontaneously Hypertensive Rat. Hypertension, 1997, 30, 854-858.	2.7	36
207	Genetic isolation of a region of chromosome 8 that exerts major effects on blood pressure and cardiac mass in the spontaneously hypertensive rat Journal of Clinical Investigation, 1997, 99, 577-581.	8.2	74
208	Genetic susceptibility to hypertension-induced renal damage in the rat. Evidence based on kidney-specific genome transfer Journal of Clinical Investigation, 1997, 100, 1373-1382.	8.2	86
209	Use of AFLP Markers for Gene Mapping and QTL Detection in the Rat. Genomics, 1996, 37, 289-294.	2.9	64
210	A genetic linkage map of the rat derived from recombinant inbred strains. Mammalian Genome, 1996, 7, 117-127.	2.2	108
211	Linkage mapping of the carboxyl ester lipase gene (Cel) to rat Chromosome 3. Mammalian Genome, 1996, 7, 559-560.	2.2	2
212	Effects of renin gene transfer on blood pressure and renin gene expression in a congenic strain of Dahl salt-resistant rats Journal of Clinical Investigation, 1996, 97, 522-527.	8.2	47
213	Quantitative trait loci influencing cholesterol and phospholipid phenotypes map to chromosomes that contain genes regulating blood pressure in the spontaneously hypertensive rat Journal of Clinical Investigation, 1996, 98, 856-862.	8.2	75
214	Mapping and sequence analysis of the gene encoding the beta subunit of the epithelial sodium channel in experimental models of hypertension. Journal of Hypertension, 1995, 13, 1247-1251.	0.5	27
215	A genetic linkage map of the laboratory rat, Rattus norvegicus. Nature Genetics, 1995, 9, 63-69.	21.4	477
216	Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains Journal of Clinical Investigation, 1995, 96, 1973-1978.	8.2	146

#	Article	IF	CITATIONS
217	Genetic contamination of Dahl SS/Jr rats. Impact on studies of salt-sensitive hypertension Hypertension, 1994, 23, 786-790.	2.7	45
218	Biochemical genetics of methylglyoxal dehydrogenases in the laboratory rat (Rattus norvegicus). Biochemical Genetics, 1994, 32, 147-154.	1.7	9
219	USE OF RECOMBINANT INBRED STRAINS FOR EVALUATION OF INTERMEDIATE PHENOTYPES IN SPONTANEOUS HYPERTENSION. Clinical and Experimental Pharmacology and Physiology, 1994, 21, 903-906.	1.9	6
220	GENES OF STRESS IN EXPERIMENTAL HYPERTENSION. Clinical and Experimental Pharmacology and Physiology, 1994, 21, 907-911.	1.9	8
221	Linkage Mapping of Alkaline Phosphatase 1, Inhibin α Subunit, and γ-Crystallin 1 on Rat Chromosome 9 and Na+,K+-ATPase I±2 Subunit, Renin, and Leukocyte Common Antigen on Rat Chromosome 13. Genomics, 1994, 19, 190-191.	2.9	8
222	Genetic mapping of two new blood pressure quantitative trait loci in the rat by genotyping endothelin system genes Journal of Clinical Investigation, 1994, 93, 2701-2709.	8.2	116
223	New genetic models for hypertension research. Trends in Cardiovascular Medicine, 1993, 3, 119-123.	4.9	6
224	Renal renin activity is associated with alterations of the renin gene in recombinant inbred rat strains. Clinical Science, 1993, 84, 129-132.	4.3	3
225	Hypertensive strains and normotensive 'control' strains. How closely are they related?. Hypertension, 1992, 19, 419-424.	2.7	91
226	Platelet aggregation in spontaneous hypertension. Journal of Hypertension, 1992, 10, 1453-1456.	0.5	13
227	Assignment of rat linkage group V to chromosome 19 by single-strand conformation polymorphism analysis of somatic cell hybrids. Genomics, 1992, 12, 350-356.	2.9	19
228	Association of red blood cell sodium leak with blood pressure in recombinant inbred strains Hypertension, 1992, 20, 575-582.	2.7	13
229	Restriction fragment length polymorphism of hsp70 gene, localized in the RT1 complex, is associated with hypertension in spontaneously hypertensive rats Hypertension, 1992, 19, 611-614.	2.7	57
230	The rat renin gene: Assignment to chromosome 13 and linkage to the regulation of blood pressure. Genomics, 1991, 9, 466-472.	2.9	70
231	Cosegregation of blood pressure with a kallikrein gene family polymorphism Hypertension, 1991, 17, 242-246.	2.7	205
232	Genetic determination of heart and kidney weights studied using a set of recombinant inbred strains: the relationship to blood pressure. Journal of Hypertension, 1990, 8, 1091-1095.	0.5	21
233	An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. Journal of Hypertension, 1989, 7, 270.	0.5	156