Noam E Ziv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2010863/publications.pdf

Version: 2024-02-01

		126907	1	38484
59	5,344	33		58
papers	citations	h-index		g-index
146	146	146		4770
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Patient-Derived Anti-NMDAR Antibody Disinhibits Cortical Neuronal Networks through Dysfunction of Inhibitory Neuron Output. Journal of Neuroscience, 2022, 42, 3253-3270.	3 . 6	12
2	A possible non-proteolytic role of ubiquitin conjugation in alleviating the pathology of Huntingtin's aggregation. Cell Death and Differentiation, 2021, 28, 814-817.	11.2	4
3	Spine dynamics in the brain, mental disorders and artificial neural networks. Nature Reviews Neuroscience, 2021, 22, 407-422.	10.2	89
4	Site-specific ubiquitination of pathogenic huntingtin attenuates its deleterious effects. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18661-18669.	7.1	18
5	Activity Dependent and Independent Determinants of Synaptic Size Diversity. Journal of Neuroscience, 2020, 40, 2828-2848.	3.6	43
6	A non-fluorescent HaloTag blocker for improved measurement and visualization of protein synthesis in living cells. F1000Research, 2020, 9, 302.	1.6	1
7	A non-fluorescent HaloTag blocker for improved measurement and visualization of protein synthesis in living cells. F1000Research, 2020, 9, 302.	1.6	4
8	Neuronal and synaptic protein lifetimes. Current Opinion in Neurobiology, 2019, 57, 9-16.	4.2	28
9	Synaptic Tenacity or Lack Thereof: Spontaneous Remodeling of Synapses. Trends in Neurosciences, 2018, 41, 89-99.	8.6	80
10	Maintaining the active zone: Demand, supply and disposal of core active zone proteins. Neuroscience Research, 2018, 127, 70-77.	1.9	14
11	Closed Loop Experiment Manager (CLEM)—An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments. Frontiers in Neuroscience, 2017, 11, 579.	2.8	7
12	Recent insights on principles of synaptic protein degradation. F1000Research, 2017, 6, 675.	1.6	37
13	Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics. PLoS Computational Biology, 2017, 13, e1005668.	3.2	24
14	Relative Contributions of Specific Activity Histories and Spontaneous Processes to Size Remodeling of Glutamatergic Synapses. PLoS Biology, 2016, 14, e1002572.	5.6	42
15	The effects of proteasomal inhibition on synaptic proteostasis. EMBO Journal, 2016, 35, 2238-2262.	7.8	61
16	Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses. PLoS Computational Biology, 2015, 11, e1004632.	3.2	28
17	Reduced SNAP-25 increases PSD-95 mobility and impairs spine morphogenesis. Cell Death and Differentiation, 2015, 22, 1425-1436.	11.2	59
18	Adaptation to prolonged neuromodulation in cortical cultures: an invariable return to network synchrony. BMC Biology, 2014, 12, 83.	3.8	22

#	Article	IF	CITATIONS
19	Synaptic Size Dynamics as an Effectively Stochastic Process. PLoS Computational Biology, 2014, 10, e1003846.	3.2	68
20	The roles of protein expression in synaptic plasticity and memory consolidation. Frontiers in Molecular Neuroscience, 2014, 7, 86.	2.9	125
21	Presynaptic and Postsynaptic Scaffolds. Neuroscientist, 2014, 20, 439-452.	3.5	39
22	Imaging-Based Measures of Synaptic Tenacity. Neuromethods, 2014, , 161-185.	0.3	1
23	Matching Dynamics of Presynaptic and Postsynaptic Scaffolds. Journal of Neuroscience, 2013, 33, 13094-13100.	3.6	19
24	Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance. PLoS ONE, 2013, 8, e63191.	2.5	176
25	Formation of Golgi-Derived Active Zone Precursor Vesicles. Journal of Neuroscience, 2012, 32, 11095-11108.	3.6	82
26	Neuroligin-1 Loss Is Associated with Reduced Tenacity of Excitatory Synapses. PLoS ONE, 2012, 7, e42314.	2.5	29
27	Long-term Relationships between Cholinergic Tone, Synchronous Bursting and Synaptic Remodeling. PLoS ONE, 2012, 7, e40980.	2.5	26
28	Enhancement of neural representation capacity by modular architecture in networks of cortical neurons. European Journal of Neuroscience, 2012, 35, 1753-1760.	2.6	38
29	Syntaxin1A Lateral Diffusion Reveals Transient and Local SNARE Interactions. Journal of Neuroscience, 2011, 31, 17590-17602.	3.6	59
30	Use Dependence of Presynaptic Tenacity. Journal of Neuroscience, 2011, 31, 16770-16780.	3.6	29
31	Hebb and the art of spine remodeling. F1000 Biology Reports, 2010, 2, 69.	4.0	1
32	Exchange and Redistribution Dynamics of the Cytoskeleton of the Active Zone Molecule Bassoon. Journal of Neuroscience, 2009, 29, 351-358.	3.6	54
33	Dynein light chain regulates axonal trafficking and synaptic levels of Bassoon. Journal of Cell Biology, 2009, 185, 341-355.	5.2	85
34	Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity. PLoS Biology, 2009, 7, e1000136.	5.6	153
35	Impulse conduction and gap junctional remodelling by endothelinâ€1 in cultured neonatal rat ventricular myocytes. Journal of Cellular and Molecular Medicine, 2009, 13, 562-573.	3.6	19
36	New tricks and old spines. Nature, 2009, 462, 859-861.	27.8	20

#	Article	IF	CITATIONS
37	Synapse development: still looking for the forest, still lost in the trees. Cell and Tissue Research, 2006, 326, 249-262.	2.9	61
38	Assembly of Active Zone Precursor Vesicles. Journal of Biological Chemistry, 2006, 281, 6038-6047.	3.4	88
39	Local Sharing as a Predominant Determinant of Synaptic Matrix Molecular Dynamics. PLoS Biology, 2006, 4, e271.	5.6	151
40	Molecular Dynamics of a Presynaptic Active Zone Protein Studied in Munc13-1-Enhanced Yellow Fluorescent Protein Knock-In Mutant Mice. Journal of Neuroscience, 2006, 26, 13054-13066.	3.6	77
41	Characterization of the neuroprotective activity of rasagiline in cerebellar granule cells. Neuropharmacology, 2005, 48, 406-416.	4.1	28
42	Postsynaptic Density Assembly Is Fundamentally Different from Presynaptic Active Zone Assembly. Journal of Neuroscience, 2004, 24, 1507-1520.	3.6	151
43	Cellular and molecular mechanisms of presynaptic assembly. Nature Reviews Neuroscience, 2004, 5, 385-399.	10.2	269
44	Dopamine-Induced Dispersion of Correlations Between Action Potentials in Networks of Cortical Neurons. Journal of Neurophysiology, 2004, 92, 1817-1824.	1.8	73
45	Unitary Assembly of Presynaptic Active Zones from Piccolo-Bassoon Transport Vesicles. Neuron, 2003, 38, 237-252.	8.1	285
46	Molecular mechanisms of CNS synaptogenesis. Trends in Neurosciences, 2002, 25, 243-250.	8.6	172
47	The Dynamics of SAP90/PSD-95 Recruitment to New Synaptic Junctions. Molecular and Cellular Neurosciences, 2001, 18, 149-167.	2.2	103
48	Assembling the Presynaptic Active Zone. Neuron, 2001, 29, 131-143.	8.1	372
49	Evolution of Action Potential Propagation and Repolarization in Cultured Neonatal Rat Ventricular Myocytes. Journal of Cardiovascular Electrophysiology, 2001, 12, 1269-1277.	1.7	71
50	Principles of glutamatergic synapse formation: seeing the forest for the trees. Current Opinion in Neurobiology, 2001, 11, 536-543.	4.2	66
51	Recruitment of Synaptic Molecules during Synaptogenesis. Neuroscientist, 2001, 7, 365-370.	3.5	11
52	Assembly of New Individual Excitatory Synapses. Neuron, 2000, 27, 57-69.	8.1	454
53	Induction of Growth Cone Formation by Transient and Localized Increases of Intracellular Proteolytic Activity. Journal of Cell Biology, 1998, 140, 223-232.	5.2	32
54	Localized and Transient Elevations of Intracellular Ca ²⁺ Induce the Dedifferentiation of Axonal Segments into Growth Cones. Journal of Neuroscience, 1997, 17, 3568-3579.	3.6	124

#	ARTICLE	IF	CITATION
55	Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation. Neuron, 1996, 17, 91-102.	8.1	800
56	Potentiation of Evoked Vesicle Turnover at Individually Resolved Synaptic Boutons. Neuron, 1996, 17, 125-134.	8.1	103
57	Use of Aplysia neurons for the study of cellular alterations and the resealing of transected axons in vitro. Journal of Neuroscience Methods, 1996, 69, 91-102.	2.5	40
58	Use of 2,3-Naphthalenedicarboxaldehyde Derivatization for Single-Cell Analysis of Glutathione by Capillary Electrophoresis and Histochemical Localization by Fluorescence Microscopy. Analytical Chemistry, 1995, 67, 4261-4268.	6.5	129
59	Spatiotemporal Distribution of Ca2+Following Axotomy and Throughout the Recovery Process of CulturedAplysiaNeurons. European Journal of Neuroscience, 1993, 5, 657-668.	2.6	87