
Jean-Paul Armache

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2009844/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleosome recognition and DNA distortion by the Chd1 remodeler in a nucleotide-free state. Nature Structural and Molecular Biology, 2022, 29, 121-129.	8.2	21
2	Lake microbiome and trophy fluctuations of the ancient hemp rettery. Scientific Reports, 2022, 12, .	3.3	3
3	Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation. Science, 2021, 371, .	12.6	70
4	Sharing biological data: why, when, and how. FEBS Letters, 2021, 595, 847-863.	2.8	26
5	Differential ligand-selective control of opposing enzymatic activities within a bifunctional c-di-GMP enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
6	Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein. Biochemistry, 2021, 60, 3801-3812.	2.5	4
7	Single-particle cryo-EM: beyond the resolution. National Science Review, 2019, 6, 864-866.	9.5	9
8	Structural Basis of Dot1L Stimulation by Histone H2B Lysine 120ÂUbiquitination. Molecular Cell, 2019, 74, 1010-1019.e6.	9.7	115
9	Cryo-EM of multiple cage architectures reveals a universal mode of clathrin self-assembly. Nature Structural and Molecular Biology, 2019, 26, 890-898.	8.2	56
10	Cryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control through the nucleosome. ELife, 2019, 8, .	6.0	70
11	Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9095-E9104.	7.1	40
12	Cryo-EM structure of a fungal mitochondrial calcium uniporter. Nature, 2018, 559, 570-574.	27.8	125
13	The first single particle analysis Map Challenge: A summary of the assessments. Journal of Structural Biology, 2018, 204, 291-300.	2.8	17
14	MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nature Methods, 2017, 14, 331-332.	19.0	6,166
15	Single-particle cryo-EM data acquisition by using direct electron detection camera. Microscopy (Oxford, England), 2016, 65, 35-41.	1.5	46
16	A saposin-lipoprotein nanoparticle system for membrane proteins. Nature Methods, 2016, 13, 345-351.	19.0	209
17	Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature, 2015, 520, 511-517.	27.8	522
18	The Mechanism of Nucleosome Spacing by a Dimeric Chromatin Remodeling Enzyme. Biophysical Journal, 2014, 106, 69a-70a.	0.5	0

2

JEAN-PAUL ARMACHE

#	Article	IF	CITATIONS
19	Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature, 2014, 506, 107-110.	27.8	186
20	Structures of the human and Drosophila 80S ribosome. Nature, 2013, 497, 80-85.	27.8	474
21	Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution. Nucleic Acids Research, 2013, 41, 1284-1293.	14.5	59
22	Solution structure of the natively assembled yeast ribosomal stalk determined by small-angle X-ray scattering. Biochemical Journal, 2012, 444, 205-209.	3.7	10
23	The DARC site: a database of aligned ribosomal complexes. Nucleic Acids Research, 2012, 40, D495-D500.	14.5	7
24	Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature, 2012, 482, 501-506.	27.8	210
25	Proteomic Characterization of Archaeal Ribosomes Reveals the Presence of Novel Archaeal-Specific Ribosomal Proteins. Journal of Molecular Biology, 2011, 405, 1215-1232.	4.2	28
26	Structure of the no-go mRNA decay complex Dom34–Hbs1 bound to a stalled 80S ribosome. Nature Structural and Molecular Biology, 2011, 18, 715-720.	8.2	150
27	Localization of eukaryote-specific ribosomal proteins in a 5.5-â,,« cryo-EM map of the 80S eukaryotic ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19754-19759.	7.1	122
28	α-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel. Nature Structural and Molecular Biology, 2010, 17, 313-317.	8.2	187
29	Mechanism of eIF6-mediated Inhibition of Ribosomal Subunit Joining. Journal of Biological Chemistry, 2010, 285, 14848-14851.	3.4	107
30	Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-â,,« resolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19748-19753.	7.1	196
31	Structural Insight into Nascent Polypeptide Chain–Mediated Translational Stalling. Science, 2009, 326, 1412-1415.	12.6	263
32	Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome. Science, 2009, 326, 1369-1373.	12.6	263