Ines Martinez-Corral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2009374/publications.pdf

Version: 2024-02-01

26 papers 2,256 citations

304743 22 h-index 26 g-index

30 all docs 30 docs citations

30 times ranked

3566 citing authors

#	Article	IF	CITATIONS
1	Editorial: Modulating Vascular Lymphatic Growth in Disease: Current and Potential Pharmacological Approaches for Prevention and Treatment. Frontiers in Pharmacology, 2022, 13, 910142.	3 . 5	O
2	Leptin brain entry via a tanycytic LepR–EGFR shuttle controls lipid metabolism and pancreas function. Nature Metabolism, 2021, 3, 1071-1090.	11.9	67
3	Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. Journal of Clinical Investigation, 2021, 131, .	8.2	31
4	GnRH Neurons: The Return of the Rat. Endocrinology, 2021, 162, .	2.8	1
5	Tamoxifen-independent recombination of reporter genes limits lineage tracing and mosaic analysis using CreERT2 lines. Transgenic Research, 2020, 29, 53-68.	2.4	69
6	Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nature Communications, 2020, 11, 2869.	12.8	59
7	Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. Nature Communications, 2018, 9, 1511.	12.8	122
8	Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Nature Communications, 2018, 9, 1296.	12.8	45
9	Genetic Lineage Tracing of Lymphatic Endothelial Cells in Mice. Methods in Molecular Biology, 2018, 1846, 37-53.	0.9	4
10	PROX1 is a transcriptional regulator of MMP14. Scientific Reports, 2018, 8, 9531.	3.3	26
11	Dachsous 1–Fat4 Signaling Controls Endothelial Cell Polarization During Lymphatic Valve Morphogenesis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1732-1735.	2.4	31
12	Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature, 2017, 546, 676-680.	27.8	123
13	Diphtheria toxin–mediated ablation of lymphatic endothelial cells results in progressive lymphedema. JCl Insight, 2016, 1, e84095.	5.0	35
14	Lymph Node Transplantation Decreases Swelling and Restores Immune Responses in a Transgenic Model of Lymphedema. PLoS ONE, 2016, 11, e0168259.	2.5	29
15	<i>Pdgfrbâ€Cre</i> targets lymphatic endothelial cells of both venous and nonâ€venous origins. Genesis, 2016, 54, 350-358.	1.6	35
16	Vegfr3-CreER T2 mouse, a new genetic tool for targeting the lymphatic system. Angiogenesis, 2016, 19, 433-445.	7.2	39
17	EPHB4 kinase–inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. Journal of Clinical Investigation, 2016, 126, 3080-3088.	8.2	83
18	cKit Lineage Hemogenic Endothelium-Derived Cells Contribute to Mesenteric Lymphatic Vessels. Cell Reports, 2015, 10, 1708-1721.	6.4	207

#	Article	IF	CITATIONS
19	Nonvenous Origin of Dermal Lymphatic Vasculature. Circulation Research, 2015, 116, 1649-1654.	4.5	220
20	FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. Journal of Clinical Investigation, 2015, 125, 3861-3877.	8.2	186
21	Regulation of lymphatic vascular morphogenesis: Implications for pathological (tumor) lymphangiogenesis. Experimental Cell Research, 2013, 319, 1618-1625.	2.6	23
22	In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6223-6228.	7.1	108
23	Mutations in KIF11 Cause Autosomal-Dominant Microcephaly Variably Associated with Congenital Lymphedema and Chorioretinopathy. American Journal of Human Genetics, 2012, 90, 356-362.	6.2	138
24	A Creâ€reporter transgenic mouse expressing the farâ€red fluorescent protein Katushka. Genesis, 2011, 49, 36-45.	1.6	26
25	Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nature Genetics, 2011, 43, 929-931.	21.4	440
26	CDK2 is required for proper homologous pairing, recombination and sex-body formation during male mouse meiosis. Journal of Cell Science, 2009, 122, 2149-2159.	2.0	99