Ines Martinez-Corral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2009374/publications.pdf

Version: 2024-02-01

26 papers 2,256 citations

304743 22 h-index 26 g-index

30 all docs 30 docs citations

30 times ranked

3566 citing authors

#	Article	IF	CITATIONS
1	Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nature Genetics, 2011, 43, 929-931.	21.4	440
2	Nonvenous Origin of Dermal Lymphatic Vasculature. Circulation Research, 2015, 116, 1649-1654.	4. 5	220
3	cKit Lineage Hemogenic Endothelium-Derived Cells Contribute to Mesenteric Lymphatic Vessels. Cell Reports, 2015, 10, 1708-1721.	6.4	207
4	FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. Journal of Clinical Investigation, 2015, 125, 3861-3877.	8.2	186
5	Mutations in KIF11 Cause Autosomal-Dominant Microcephaly Variably Associated with Congenital Lymphedema and Chorioretinopathy. American Journal of Human Genetics, 2012, 90, 356-362.	6.2	138
6	Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature, 2017, 546, 676-680.	27.8	123
7	Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. Nature Communications, 2018, 9, 1511.	12.8	122
8	In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6223-6228.	7.1	108
9	CDK2 is required for proper homologous pairing, recombination and sex-body formation during male mouse meiosis. Journal of Cell Science, 2009, 122, 2149-2159.	2.0	99
10	EPHB4 kinase–inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. Journal of Clinical Investigation, 2016, 126, 3080-3088.	8.2	83
11	Tamoxifen-independent recombination of reporter genes limits lineage tracing and mosaic analysis using CreERT2 lines. Transgenic Research, 2020, 29, 53-68.	2.4	69
12	Leptin brain entry via a tanycytic LepR–EGFR shuttle controls lipid metabolism and pancreas function. Nature Metabolism, 2021, 3, 1071-1090.	11.9	67
13	Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nature Communications, 2020, 11, 2869.	12.8	59
14	Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Nature Communications, 2018, 9, 1296.	12.8	45
15	Vegfr3-CreER T2 mouse, a new genetic tool for targeting the lymphatic system. Angiogenesis, 2016, 19, 433-445.	7.2	39
16	Diphtheria toxin–mediated ablation of lymphatic endothelial cells results in progressive lymphedema. JCI Insight, 2016, 1, e84095.	5.0	35
17	<i>Pdgfrbâ€Cre</i> targets lymphatic endothelial cells of both venous and nonâ€venous origins. Genesis, 2016, 54, 350-358.	1.6	35
18	Dachsous1–Fat4 Signaling Controls Endothelial Cell Polarization During Lymphatic Valve Morphogenesis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1732-1735.	2.4	31

#	Article	IF	CITATIONS
19	Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. Journal of Clinical Investigation, $2021,131,.$	8.2	31
20	Lymph Node Transplantation Decreases Swelling and Restores Immune Responses in a Transgenic Model of Lymphedema. PLoS ONE, 2016, 11, e0168259.	2.5	29
21	A Creâ€reporter transgenic mouse expressing the farâ€red fluorescent protein Katushka. Genesis, 2011, 49, 36-45.	1.6	26
22	PROX1 is a transcriptional regulator of MMP14. Scientific Reports, 2018, 8, 9531.	3.3	26
23	Regulation of lymphatic vascular morphogenesis: Implications for pathological (tumor) lymphangiogenesis. Experimental Cell Research, 2013, 319, 1618-1625.	2.6	23
24	Genetic Lineage Tracing of Lymphatic Endothelial Cells in Mice. Methods in Molecular Biology, 2018, 1846, 37-53.	0.9	4
25	GnRH Neurons: The Return of the Rat. Endocrinology, 2021, 162, .	2.8	1
26	Editorial: Modulating Vascular Lymphatic Growth in Disease: Current and Potential Pharmacological Approaches for Prevention and Treatment. Frontiers in Pharmacology, 2022, 13, 910142.	3.5	0