Javid Taheri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2009265/publications.pdf

Version: 2024-02-01

304743 254184 2,403 115 22 43 citations h-index g-index papers 118 118 118 2522 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Energy efficient resource controller for Apache Storm. Concurrency Computation Practice and Experience, 2023, 35, .	2.2	1
2	MultiScaler: A Multi-Loop Auto-Scaling Approach for Cloud-Based Applications. IEEE Transactions on Cloud Computing, 2022, 10, 2769-2786.	4.4	12
3	Energy-efficient workflow scheduling with budget-deadline constraints for cloud. Computing (Vienna/New York), 2022, 104, 601-625.	4.8	6
4	Low Latency Execution Guarantee Under Uncertainty in Serverless Platforms. Lecture Notes in Computer Science, 2022, , 324-335.	1.3	0
5	QoS-aware online scheduling of multiple workflows under task execution time uncertainty in clouds. Cluster Computing, 2022, 25, 3767-3784.	5.0	5
6	IEEE Transactions on Sustainable Computing Special Issue on Sustainability of Fog/Edge Computing Systems. IEEE Transactions on Sustainable Computing, 2022, 7, 248-249.	3.1	0
7	Dynamic Resource Provisioning for Sustainable Cloud Computing Systems in the Presence of Correlated Failures. IEEE Transactions on Sustainable Computing, 2021, 6, 641-654.	3.1	8
8	Deployment of real-time systems in the cloud environment. Journal of Supercomputing, 2021, 77, 2069-2090.	3.6	6
9	Optimal Application Deployment in Resource Constrained Distributed Edges. IEEE Transactions on Mobile Computing, 2021, 20, 1907-1923.	5.8	98
10	Graceful Performance Degradation in Apache Storm. Lecture Notes in Computer Science, 2021, , 389-400.	1.3	1
11	AutoScaleSim: A simulation toolkit for auto-scaling Web applications in clouds. Simulation Modelling Practice and Theory, 2021, 108, 102245.	3.8	16
12	Design and Optimization of Traffic-Aware TSCH Scheduling for Mobile 6TiSCH Networks., 2021,,.		8
13	Adaptive and Latency-aware Load Balancing for Control Plane Traffic in the 4G/5G Core., 2021,,.		3
14	Workflow scheduling of scientific workflows under simultaneous deadline and budget constraints. Cluster Computing, 2021, 24, 3449-3467.	5.0	8
15	Optimal Placement of Recurrent Service Chains on Distributed Edge-Cloud Infrastructures. , 2021, , .		4
16	Throughput Maximization in Low-Power IoT Networks via Tuning the Size of the TSCH Slotframe. , 2021, , .		2
17	PerfSim: A Performance Simulator for Cloud Native Microservice Chains. IEEE Transactions on Cloud Computing, 2021, , 1-1.	4.4	1
18	Overcoming security limitations of Secret Share techniques: the Nested Secret Share. , 2021, , .		5

#	Article	IF	CITATIONS
19	QSpark: Distributed Execution of Batch & Distributed Execution of		1
20	Data-Intensive Workload Consolidation in Serverless (Lambda/FaaS) Platforms. , 2021, , .		5
21	Dynamical Service Deployment and Replacement in Resource-Constrained Edges. Mobile Networks and Applications, 2020, 25, 674-689.	3.3	21
22	Service Function Chain Placement for Joint Cost and Latency Optimization. Mobile Networks and Applications, 2020, 25, 2191-2205.	3.3	27
23	Q-Flink: A QoS-Aware Controller for Apache Flink. , 2020, , .		9
24	On the Use of a Virtualized 5G Core for Time Critical Communication in Smart Grid., 2020,,.		5
25	A Performance Modelling Approach for SLA-Aware Resource Recommendation in Cloud Native Network Functions. , 2020, , .		7
26	bwSlicer: A bandwidth slicing framework for cloud data centers. Future Generation Computer Systems, 2020, 112, 767-784.	7.5	8
27	Dynamical Resource Allocation in Edge for Trustable Internet-of-Things Systems: A Reinforcement Learning Method. IEEE Transactions on Industrial Informatics, 2020, 16, 6103-6113.	11.3	116
28	A Deployable Containerized 5G Core Solution for Time Critical Communication in Smart Grid., 2020,,.		11
29	Validating the Sharing Behavior and Latency Characteristics of the L4S Architecture. Computer Communication Review, 2020, 50, 37-44.	1.8	5
30	Spark-Tuner: An Elastic Auto-Tuner for Apache Spark Streaming. , 2020, , .		0
31	IntOpt: In-Band Network Telemetry Optimization for NFV Service Chain Monitoring. , 2019, , .		19
32	Optimized Service Chain Placement Using Genetic Algorithm. , 2019, , .		14
33	Privacy-Aware Job Submission in the Cloud. , 2019, , .		1
34	Mitigating Rogue Node Attacks in Edge Computing. , 2019, , .		0
35	On the Cost-Optimality Trade-off for Service Function Chain Reconfiguration. , 2019, , .		11
36	Dynamic Control of CPU Cap Allocations in Stream Processing and Data-Flow Platforms. , 2019, , .		0

#	Article	IF	Citations
37	On the Applicability of Secret Share Algorithms for Saving Data on IoT, Edge and Cloud Devices. , 2019, , .		9
38	MARA: Mobility-Aware Rate Adaptation for Low Power IoT Networks Using Game Theory. , 2019, , .		1
39	GA-ETI: An enhanced genetic algorithm for the scheduling of scientific workflows in cloud environments. Journal of Computational Science, 2018, 26, 318-331.	2.9	71
40	On Load Balancing for a Virtual and Distributed MME in the 5G Core. , 2018, , .		7
41	NFV-Inspector: A Systematic Approach to Profile and Analyze Virtual Network Functions. , 2018, , .		3
42	Automated Analysis and Profiling of Virtual Network Functions: the NFV-Inspector Approach. , 2018, , .		9
43	MDTCP: Towards a Practical Multipath Transport Protocol for Telco Cloud Datacenters. , 2018, , .		5
44	On the Energy Cost of Robustness and Resiliency for Virtual Network Function Placement. , 2018, , .		5
45	Composition-Driven IoT Service Provisioning in Distributed Edges. IEEE Access, 2018, 6, 54258-54269.	4.2	72
46	A Note on the Convergence of IoT, Edge, and Cloud Computing in Smart Cities. IEEE Cloud Computing, 2018, 5, 22-24.	3.9	17
47	A balanced scheduler with data reuse and replication for scientific workflows in cloud computing systems. Future Generation Computer Systems, 2017, 74, 168-178.	7.5	67
48	Mobility-Aware Service Composition in Mobile Communities. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 555-568.	9.3	107
49	HPC-Based Intelligent Volt/VAr Control of Unbalanced Distribution Smart Grid in the Presence of Noise. IEEE Transactions on Smart Grid, 2017, 8, 1446-1459.	9.0	19
50	PSO-DS: a scheduling engine for scientific workflow managers. Journal of Supercomputing, 2017, 73, 3924-3947.	3.6	16
51	SDN/NFV-Based Mobile Packet Core Network Architectures: A Survey. IEEE Communications Surveys and Tutorials, 2017, 19, 1567-1602.	39.4	250
52	vmBBProfiler: a black-box profiling approach to quantify sensitivity of virtual machines to shared cloud resources. Computing (Vienna/New York), 2017, 99, 1149-1177.	4.8	8
53	Privacy-Aware Scheduling SaaS in High Performance Computing Environments. IEEE Transactions on Parallel and Distributed Systems, 2017, 28, 1176-1188.	5.6	27
54	A Dynamic Resource Controller for a Lambda Architecture. , 2017, , .		11

#	Article	IF	Citations
55	A model for QoS-aware VNF placement and provisioning. , 2017, , .		40
56	Real-Time Virtual Network Function (VNF) Migration toward Low Network Latency in Cloud Environments. , 2017, , .		28
57	Virtual Network Function Placement: Towards Minimizing Network Latency and Lead Time. , 2017, , .		12
58	Analysis of Network Latency in Virtualized Environments. , 2016, , .		18
59	Optimizing Virtual Machine Consolidation in Virtualized Datacenters Using Resource Sensitivity. , 2016, , .		14
60	vmBBThrPred: A Black-Box Throughput Predictor for Virtual Machines in Cloud Environments. Lecture Notes in Computer Science, 2016, , 18-33.	1.3	11
61	Toward Mobile Service Computing: Opportunities and Challenges. IEEE Cloud Computing, 2016, 3, 32-41.	3.9	43
62	Genetic algorithm in finding Pareto frontier of optimizing data transfer versus job execution in grids. Concurrency Computation Practice and Experience, 2016, 28, 1715-1736.	2.2	4
63	Cost Performance Driven Service Mashup: A Developer Perspective. IEEE Transactions on Parallel and Distributed Systems, 2016, 27, 2234-2247.	5.6	27
64	Computation Offloading for Service Workflow in Mobile Cloud Computing. IEEE Transactions on Parallel and Distributed Systems, 2015, 26, 3317-3329.	5.6	228
65	Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments. World Wide Web, 2015, 18, 1737-1757.	4.0	80
66	Online Multiple Workflow Scheduling under Privacy and Deadline in Hybrid Cloud Environment. , 2014, , .		14
67	Characterization of essential proteins based on network topology in proteins interaction networks. , 2014, , .		2
68	Ubiquitous Data-Centric Sensor Networks. International Journal of Distributed Sensor Networks, 2014, 10, 459768.	2.2	0
69	Fuzzy modeling to predict performance of collocated virtual machines in private clouds. , 2014, , .		2
70	A hierarchical approach for energy-efficient scheduling of large workloads in multicore distributed systems. Sustainable Computing: Informatics and Systems, 2014, 4, 252-261.	2.2	23
71	Pareto frontier for job execution and data transfer time in hybrid clouds. Future Generation Computer Systems, 2014, 37, 321-334.	7.5	31
72	Hopfield neural network for simultaneous job scheduling and data replication in grids. Future Generation Computer Systems, 2013, 29, 1885-1900.	7.5	14

#	Article	IF	Citations
73	A Bee Colony based optimization approach for simultaneous job scheduling and data replication in grid environments. Computers and Operations Research, 2013, 40, 1564-1578.	4.0	60
74	B-Alarm: An Entropy Based Burst Traffic Prediction Approach for Ethernet Switches in Data Centers. , 2013, , .		0
75	MPHC: Preserving Privacy for Workflow Execution in Hybrid Clouds. , 2013, , .		15
76	A study on using uncertain time series matching algorithms for MapReduce applications. Concurrency Computation Practice and Experience, 2013, 25, 1699-1718.	2,2	16
77	DLS: A dynamic local stitching mechanism to rectify transmitting path fragments in wireless sensor networks. Journal of Network and Computer Applications, 2013, 36, 306-315.	9.1	17
78	Network Load Analysis and Provisioning of MapReduce Applications. , 2012, , .		3
79	Using genetic algorithm in reconstructing single individual haplotype with minimum error correction. Journal of Biomedical Informatics, 2012, 45, 922-930.	4.3	11
80	Using Simulated Annealing to Find Lower Bounds of Localization with Noisy Measurements. , 2012, , .		1
81	The implementation of novel idea of translation matrix to maintain QoS for a roaming user between heterogeneous 4G wireless networks. , 2012, , .		0
82	A distributed energy saving approach for Ethernet switches in data centers. , 2012, , .		14
83	Data-Intensive Workload Consolidation for the Hadoop Distributed File System. , 2012, , .		14
84	A Pareto Frontier for Optimizing Data Transfer and Job Execution in Grids. , 2012, , .		2
85	On Modelling and Prediction of Total CPU Usage for Applications in MapReduce Environments. Lecture Notes in Computer Science, 2012, , 414-427.	1.3	14
86	A PARALLEL METAHEURISTIC FRAMEWORK BASED ON HARMONY SEARCH FOR SCHEDULING IN DISTRIBUTED COMPUTING SYSTEMS. International Journal of Foundations of Computer Science, 2012, 23, 445-464.	1.1	5
87	Machine Learning Applications in Computer Vision. , 2012, , 99-132.		1
88	On Using Pattern Matching Algorithms in MapReduce Applications. , 2011, , .		14
89	Some observations on optimal frequency selection in DVFS-based energy consumption minimization. Journal of Parallel and Distributed Computing, 2011, 71, 1154-1164.	4.1	111
90	Fuzzy online location management in mobile computing environments. Journal of Parallel and Distributed Computing, 2011, 71, 1142-1153.	4.1	5

#	Article	IF	Citations
91	VLOCI2., 2011,,.		5
92	Finding lower bounds of localization with noisy measurements using genetic algorithms. , 2011, , .		1
93	LICA., 2011,,.		9
94	ON THE PERFORMANCE OF STATIC AND DYNAMIC LOCATION MANAGEMENT STRATEGIES IN MOBILE COMPUTING. International Journal of Foundations of Computer Science, 2011, 22, 519-546.	1.1	3
95	RBT-L: A location based approach for solving the Multiple Sequence Alignment problem. International Journal of Bioinformatics Research and Applications, 2010, 6, 37.	0.2	10
96	RBT-Km: K-Means clustering for Multiple Sequence Alignment. , 2010, , .		1
97	Linear Combinations of DVFS-Enabled Processor Frequencies to Modify the Energy-Aware Scheduling Algorithms. , 2010, , .		58
98	On the Effect of Using Third-Party Clouds for Maximizing Profit. Lecture Notes in Computer Science, 2010, , 381-390.	1.3	4
99	A framework for real time communication in sensor networks. , 2010, , .		7
100	SSPT: Secondary Structure Prediction Triangle., 2009,,.		0
101	BIO-INSPIRED ALGORITHMS FOR MOBILITY MANAGEMENT. Journal of Interconnection Networks, 2009, 10, 497-516.	1.0	2
102	RBT-GA: a novel metaheuristic for solving the multiple sequence alignment problem. BMC Genomics, 2009, 10, S10.	2.8	48
103	A Data Caching Approach for Sensor Applications. , 2009, , .		7
104	A simulation tool for mobility management experiments. International Journal of Pervasive Computing and Communications, 2009, 5, 360-379.	1.3	11
105	A modified hopfield network for mobility management. Wireless Communications and Mobile Computing, 2008, 8, 355-367.	1.2	19
106	On the provisioning of guaranteed QoS in wireless sensor networks through limited service polling models. , 2008, , .		4
107	RBT-I: A novel approach for solving the Multiple Sequence Alignment problem. , 2008, , .		5
108	Providing QoS guarantees to multiple classes of traffic in wireless sensor networks. , 2008, , .		8

#	Article	IF	CITATION
109	DomNet: Protein Domain Boundary Prediction Using Enhanced General Regression Network and New Profiles. IEEE Transactions on Nanobioscience, 2008, 7, 172-181.	3.3	29
110	Effects of dimensionality reduction techniques on time series similarity measurements., 2008,,.		1
111	A Simulated Annealing approach for mobile location management. Computer Communications, 2007, 30, 714-730.	5.1	38
112	Clustering techniques for dynamic location management in mobile computing. Journal of Parallel and Distributed Computing, 2007, 67, 430-447.	4.1	13
113	A Combined Genetic-neural Algorithm for Mobility Management. Mathematical Modelling and Algorithms, 2007, 6, 481-507.	0.5	30
114	A Multi-Objective Load Balancing System for Cloud Environments. Computer Journal, 0, , .	2.4	7
115	Enhancing disk input output performance in consolidated virtualized cloud platforms using a randomized approximation scheme. Concurrency Computation Practice and Experience, 0, , e6247.	2.2	O