Christian Schiffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2008797/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Wilson cycle passive margins: Control of orogenic inheritance on continental breakup. Gondwana Research, 2016, 39, 131-144.	6.0	66
2	A review of Pangaea dispersal and Large Igneous Provinces – In search of a causative mechanism. Earth-Science Reviews, 2020, 206, 102902.	9.1	64
3	Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea. Earth-Science Reviews, 2020, 206, 102839.	9.1	63
4	Structural inheritance in the North Atlantic. Earth-Science Reviews, 2020, 206, 102975.	9.1	60
5	Seismological evidence for a fossil subduction zone in the East Greenland Caledonides. Geology, 2014, 42, 311-314.	4.4	46
6	The Iceland Microcontinent and a continental Greenland-Iceland-Faroe Ridge. Earth-Science Reviews, 2020, 206, 102926.	9.1	42
7	LIP formation and protracted lower mantle upwelling induced by rifting and delamination. Scientific Reports, 2018, 8, 16578.	3.3	28
8	The East Greenland Caledonides—teleseismic signature, gravity and isostasy. Geophysical Journal International, 2015, 203, 1400-1418.	2.4	25
9	Evolution of Labrador Sea–Baffin Bay: Plate or Plume Processes?. Geoscience Canada, 2017, 44, 91-102.	0.8	25
10	Implications for anomalous mantle pressure and dynamic topography from lithospheric stress patterns in the North Atlantic Realm. Journal of Geodynamics, 2016, 98, 53-69.	1.6	23
11	Evidence for Basement Reactivation during the Opening of the Labrador Sea from the Makkovik Province, Labrador, Canada: Insights from Field Data and Numerical Models. Geosciences (Switzerland), 2018, 8, 308.	2.2	22
12	Late Cretaceous-Cenozoic basin inversion and palaeostress fields in the North Atlantic-western Alpine-Tethys realm: Implications for intraplate tectonics. Earth-Science Reviews, 2020, 210, 103252.	9.1	22
13	Geophysical-petrological modelling of the East Greenland Caledonides – Isostatic support from crust and upper mantle. Tectonophysics, 2016, 692, 44-57.	2.2	16
14	The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt. Geophysical Journal International, 2016, 204, 1579-1600.	2.4	16
15	The Jan Mayen microplate complex and the Wilson cycle. Geological Society Special Publication, 2019, 470, 393-414.	1.3	14
16	High Arctic geopotential stress field and implications for geodynamic evolution. Geological Society Special Publication, 2018, 460, 441-465.	1.3	13
17	Localized crustal deformation along the central North Anatolian Fault Zone revealed by joint inversion of <i>P</i> -receiver functions and <i>P</i> -wave polarizations. Geophysical Journal International, 2019, 217, 682-702.	2.4	12
18	Regional crustal architecture of Ellesmere Island, Arctic Canada. Geological Society Special Publication, 2018, 460, 19-32.	1.3	11

CHRISTIAN SCHIFFER

#	Article	IF	CITATIONS
19	Integrated crustal–geological cross-section of Ellesmere Island. Geological Society Special Publication, 2018, 460, 7-17.	1.3	10
20	A sub-crustal piercing point for North Atlantic reconstructions and tectonic implications. Geology, 2015, , G37245.1.	4.4	9
21	A new paradigm for the North Atlantic Realm. Earth-Science Reviews, 2020, 206, 103038.	9.1	6
22	Water, Hydrous Melting, and Teleseismic Signature of the Mantle Transition Zone. Geosciences (Switzerland), 2019, 9, 505.	2.2	5
23	Sediment supply on the West Greenland passive margin: redirection of a large pre-glacial drainage system. Journal of the Geological Society, 2020, 177, 1149-1160.	2.1	5
24	Deep controls on intraplate basin inversion. , 2014, , 257-274.		3
25	The crustal structure in the Northwest Atlantic region from receiver function inversion – Implications for basin dynamics and magmatism. Tectonophysics, 2022, 825, 229235.	2.2	3
26	Garnet ontrolled very low velocities in the lower mantle transition zone at sites of mantle upwelling. Terra Nova, 2018, 30, 333-340.	2.1	2
27	Vp/Vs ratios in the ParnaÃba Basin from joint active-passive seismic analysis – Implications for continental amalgamation and basin formation. Tectonophysics, 2021, 801, 228715.	2.2	1
28	New Insights Into Crustal Properties of Anatolia and Its Surroundings Inferred From Pâ€Coda Autocorrelation Inversions. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	1
29	CRUSTAL STRUCTURE OF THE EUREKAN OROGEN, ARCTIC CANADA. , 2017, , .		0
30	CRUSTAL STRUCTURE OF THE WEST GREENLAND IGNEOUS PROVINCE – IMPLICATIONS FOR TECTONO-MAGMATIC EVOLUTION. , 2020, , .		0