
Berend Wieringa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2008662/publications.pdf Version: 2024-02-01

REDENID WIEDINCA

#	Article	IF	CITATIONS
1	Lipid Analysis of the 6-Hydroxydopamine-Treated SH-SY5Y Cell Model for Parkinson's Disease. Molecular Neurobiology, 2020, 57, 848-859.	4.0	20
2	Explorative Combined Lipid and Transcriptomic Profiling of Substantia Nigra and Putamen in Parkinson's Disease. Cells, 2020, 9, 1966.	4.1	29
3	Expanded CUG repeats in <i>DMPK</i> transcripts adopt diverse hairpin conformations without influencing the structure of the flanking sequences. Rna, 2019, 25, 481-495.	3.5	15
4	Certainty-based marking in a formative assessment improves student course appreciation but not summative examination scores. BMC Medical Education, 2019, 19, 178.	2.4	6
5	Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG)n Repeat. International Journal of Molecular Sciences, 2019, 20, 5685.	4.1	14
6	The Role of Lipids in Parkinson's Disease. Cells, 2019, 8, 27.	4.1	149
7	Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Frontiers in Neurology, 2018, 9, 368.	2.4	51
8	Antisense transcription of the myotonic dystrophy locus yields low-abundant RNAs with and without (CAG)n repeat. RNA Biology, 2017, 14, 1374-1388.	3.1	25
9	The SH-SY5Y cell line in Parkinson's disease research: a systematic review. Molecular Neurodegeneration, 2017, 12, 10.	10.8	636
10	CRISPR/Cas9-Induced (CTGâ‹CAG) n Repeat Instability in the Myotonic Dystrophy Type 1 Locus: Implications for Therapeutic Genome Editing. Molecular Therapy, 2017, 25, 24-43.	8.2	108
11	Trinucleotide-repeat expanded and normal DMPK transcripts contain unusually long poly(A) tails despite differential nuclear residence. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 740-749.	1.9	7
12	Intracellular Distribution and Nuclear Activity of Antisense Oligonucleotides After Unassisted Uptake in Myoblasts and Differentiated Myotubes <i>In Vitro</i> . Nucleic Acid Therapeutics, 2017, 27, 144-158.	3.6	15
13	A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle. Human Molecular Genetics, 2016, 25, 1648-1662.	2.9	31
14	Cell Membrane Integrity in Myotonic Dystrophy Type 1: Implications for Therapy. PLoS ONE, 2015, 10, e0121556.	2.5	21
15	Submembranous recruitment of creatine kinase B supports formation of dynamic actin-based protrusions of macrophages and relies on its C-terminal flexible loop. European Journal of Cell Biology, 2015, 94, 114-127.	3.6	13
16	Glucose Controls Morphodynamics of LPS-Stimulated Macrophages. PLoS ONE, 2014, 9, e96786.	2.5	57
17	NAMPT-Mediated Salvage Synthesis of NAD+ Controls Morphofunctional Changes of Macrophages. PLoS ONE, 2014, 9, e97378.	2.5	38
18	Cancer cell metabolism regulates extracellular matrix degradation by invadopodia. European Journal of Cell Biology, 2013, 92, 113-121.	3.6	29

#	Article	IF	CITATIONS
19	Intracellular NAD(H) levels control motility and invasion of glioma cells. Cellular and Molecular Life Sciences, 2013, 70, 2175-2190.	5.4	42
20	Design and Analysis of Effects of Triplet Repeat Oligonucleotides in Cell Models for Myotonic Dystrophy. Molecular Therapy - Nucleic Acids, 2013, 2, e81.	5.1	42
21	Metabolic consequences of NDUFS4 gene deletion in immortalized mouse embryonic fibroblasts. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1925-1936.	1.0	60
22	TRPM7 Is Required for Breast Tumor Cell Metastasis. Cancer Research, 2012, 72, 4250-4261.	0.9	186
23	Metabolism of circulating ADP in the bloodstream is mediated <i>via</i> integrated actions of soluble adenylate kinaseâ€1 and NTPDase1/CD39 activities. FASEB Journal, 2012, 26, 3875-3883.	0.5	53
24	Measurement of Brain Creatine Metabolism In Vivo: Magnetic Resonance Spectroscopy Studies of Transgenic Animals. Advances in Neurobiology, 2012, , 1135-1148.	1.8	0
25	Phosphorylation target site specificity for AGC kinases DMPK E and lats2. Journal of Cellular Biochemistry, 2012, 113, 2126-2135.	2.6	1
26	Gene duplication and conversion events shaped three homologous, differentially expressed myosin regulatory light chain (MLC2) genes. European Journal of Cell Biology, 2012, 91, 629-639.	3.6	10
27	Novel invadopodia components revealed by differential proteomic analysis. European Journal of Cell Biology, 2011, 90, 115-127.	3.6	75
28	Abnormal actomyosin assembly in proliferating and differentiating myoblasts upon expression of a cytosolic DMPK isoform. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 867-877.	4.1	14
29	Complete brainâ€ŧype creatine kinase deficiency in mice blocks seizure activity and affects intracellular calcium kinetics. Epilepsia, 2010, 51, 79-88.	5.1	13
30	Molecular therapy in myotonic dystrophy: focus on RNA gain-of-function. Human Molecular Genetics, 2010, 19, R90-R97.	2.9	39
31	31P Saturation Transfer Spectroscopy Predicts Differential Intracellular Macromolecular Association of ATP and ADP in Skeletal Muscle. Journal of Biological Chemistry, 2010, 285, 39588-39596.	3.4	31
32	ATP Changes the Fluorescence Lifetime of Cyan Fluorescent Protein via an Interaction with His148. PLoS ONE, 2010, 5, e13862.	2.5	16
33	Modulation of Cell Motility by Spatial Repositioning of Enzymatic ATP/ADP Exchange Capacity. Journal of Biological Chemistry, 2009, 284, 1620-1627.	3.4	62
34	DMPK protein isoforms are differentially expressed in myogenic and neural cell lineages. Muscle and Nerve, 2009, 40, 545-555.	2.2	19
35	Gated dynamic ³¹ P MRS shows reduced contractile phosphocreatine breakdown in mice deficient in cytosolic creatine kinase and adenylate kinase. NMR in Biomedicine, 2009, 22, 523-531.	2.8	10
36	Mice lacking brain-type creatine kinase activity show defective thermoregulation. Physiology and Behavior, 2009, 97, 76-86.	2.1	37

#	Article	IF	CITATIONS
37	Local ATP Generation by Brain-Type Creatine Kinase (CK-B) Facilitates Cell Motility. PLoS ONE, 2009, 4, e5030.	2.5	59
38	Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Molecular Cancer, 2009, 8, 54.	19.2	64
39	Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proceedings of the United States of America, 2009, 106, 13915-13920.	7.1	245
40	A Tail-Anchored Myotonic Dystrophy Protein Kinase Isoform Induces Perinuclear Clustering of Mitochondria, Autophagy, and Apoptosis. PLoS ONE, 2009, 4, e8024.	2.5	22
41	Rab6 family proteins interact with the dynein light chain protein DYNLRB1. Cytoskeleton, 2008, 65, 183-196.	4.4	66
42	Brain-type creatine kinase has a crucial role in osteoclast-mediated bone resorption. Nature Medicine, 2008, 14, 966-972.	30.7	99
43	Creatine kinase B deficient neurons exhibit an increased fraction of motile mitochondria. BMC Neuroscience, 2008, 9, 73.	1.9	22
44	Creatine Kinase–Mediated ATP Supply Fuels Actin-Based Events in Phagocytosis. PLoS Biology, 2008, 6, e51.	5.6	64
45	Defective Metabolic Signaling in Adenylate Kinase AK1 Gene Knock-out Hearts Compromises Post-ischemic Coronary Reflow. Journal of Biological Chemistry, 2007, 282, 31366-31372.	3.4	46
46	In Vivo Magnetic Resonance Spectroscopy of Transgenic Mice with Altered Expression of Guanidinoacetate Methyltransferase and Creatine Kinase Isoenzymes. , 2007, 46, 119-148.		11
47	In vivo magnetic resonance spectroscopy of transgenic mouse models with altered high-energy phosphoryl transfer metabolism. NMR in Biomedicine, 2007, 20, 448-467.	2.8	15
48	Somatic CTG•CAG repeat instability in a mouse model for myotonic dystrophy type 1 is associated with changes in cell nuclearity and DNA ploidy. BMC Molecular Biology, 2007, 8, 61.	3.0	12
49	ATP and FRET—a cautionary note. Nature Biotechnology, 2007, 25, 170-172.	17.5	41
50	A role for the Rab6B Bicaudal–D1 interaction in retrograde transport in neuronal cells. Experimental Cell Research, 2007, 313, 3408-3420.	2.6	59
51	Fen1does not control somatic hypermutability of the (CTG)n· (CAG)nrepeat in a knock-in mouse model for DM1. FEBS Letters, 2006, 580, 5208-5214.	2.8	33
52	Diazoxide increases cytosolic ATP: A new paradigm for preconditioning?. Journal of Molecular and Cellular Cardiology, 2006, 40, 933.	1.9	0
53	Coiled-coil interactions modulate multimerization, mitochondrial binding and kinase activity of myotonic dystrophy protein kinase splice isoforms. FEBS Journal, 2006, 273, 1124-1136.	4.7	4
54	Normal and Pathophysiological Significance of Myotonic Dystrophy Protein Kinase. , 2006, , 79-97.		2

#	Article	IF	CITATIONS
55	Divergent Mitochondrial and Endoplasmic Reticulum Association of DMPK Splice Isoforms Depends on Unique Sequence Arrangements in Tail Anchors. Molecular and Cellular Biology, 2005, 25, 1402-1414.	2.3	27
56	Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behavioural Brain Research, 2005, 157, 219-234.	2.2	99
57	Mild impairment of motor nerve repair in mice lacking PTP-BL tyrosine phosphatase activity. Physiological Genomics, 2004, 19, 50-60.	2.3	36
58	Transgenic overexpression of human DMPK accumulates into hypertrophic cardiomyopathy, myotonic myopathy and hypotension traits of myotonic dystrophy. Human Molecular Genetics, 2004, 13, 2505-2518.	2.9	55
59	Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice. Molecular and Cellular Biochemistry, 2004, 256, 13-27.	3.1	64
60	Two structurally distinct and spatially compartmentalized adenylate kinases are expressed from the AK1 gene in mouse brain. Molecular and Cellular Biochemistry, 2004, 256, 59-72.	3.1	27
61	Mice lacking the UbCKmit isoform of creatine kinase reveal slower spatial learning acquisition, diminished exploration and habituation, and reduced acoustic startle reflex responses. Molecular and Cellular Biochemistry, 2004, 256, 305-318.	3.1	38
62	Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions. Experimental Cell Research, 2004, 297, 97-107.	2.6	6
63	Neuroprotective mechanisms of creatine occur in the absence of mitochondrial creatine kinase. Neurobiology of Disease, 2004, 15, 610-617.	4.4	54
64	Metabolic Consequences in Adenine Nucleotides Caused by Adenylate Kinase (AK1-/-) Deficiency During Contractions. Medicine and Science in Sports and Exercise, 2004, 36, S333.	0.4	0
65	The DMWD protein from the myotonic dystrophy (DM1) gene region is developmentally regulated and is present most prominently in synapse-dense brain areas. Brain Research, 2003, 971, 116-127.	2.2	22
66	Magnetization transfer effect on the creatine methyl resonance studied by CW off-resonance irradiation in human skeletal muscle on a clinical MR system. Magnetic Resonance in Medicine, 2003, 50, 468-473.	3.0	8
67	MR spectroscopy of muscle and brain in guanidinoacetate methyltransferase (GAMT)-deficient mice: Validation of an animal model to study creatine deficiency. Magnetic Resonance in Medicine, 2003, 50, 936-943.	3.0	55
68	Cloning and characterization of mCRIP2, a mouse LIM-only protein that interacts with PDZ domain IV of PTP-BL. Genes To Cells, 2003, 8, 631-644.	1.2	25
69	Contractionâ€mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation. Journal of Physiology, 2003, 553, 523-531.	2.9	16
70	Adenylate Kinase 1 Deficiency Induces Molecular and Structural Adaptations to Support Muscle Energy Metabolism. Journal of Biological Chemistry, 2003, 278, 12937-12945.	3.4	44
71	Impaired Intracellular Energetic Communication in Muscles from Creatine Kinase and Adenylate Kinase (M-CK/AK1) Double Knock-out Mice. Journal of Biological Chemistry, 2003, 278, 30441-30449.	3.4	59
72	Alternative Splicing Controls Myotonic Dystrophy Protein Kinase Structure, Enzymatic Activity, and Subcellular Localization. Molecular and Cellular Biology, 2003, 23, 5489-5501.	2.3	54

#	Article	IF	CITATIONS
73	A Role for Myotonic Dystrophy Protein Kinase in Synaptic Plasticity. Journal of Neurophysiology, 2003, 89, 1177-1186.	1.8	17
74	The Creatine Kinase System Is Essential for Optimal Refill of the Sarcoplasmic Reticulum Ca2+ Store in Skeletal Muscle. Journal of Biological Chemistry, 2002, 277, 5275-5284.	3.4	49
75	Coupling of Cell Energetics with Membrane Metabolic Sensing. Journal of Biological Chemistry, 2002, 277, 24427-24434.	3.4	134
76	Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Human Molecular Genetics, 2002, 11, 191-198.	2.9	250
77	Adenylate kinase AK1 knockout heart: energetics and functional performance under ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H776-H782.	3.2	52
78	Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 117-121.	4.1	15
79	Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. European Journal of Neuroscience, 2002, 15, 1692-1706.	2.6	141
80	Adenylate kinase phosphotransfer communicates cellular energetic signals to KATP channels. Journal of Molecular and Cellular Cardiology, 2001, 33, A18.	1.9	0
81	Adenylate kinase AK1 gene knockout heart: Compromised energetics under metabolic stress. Journal of Molecular and Cellular Cardiology, 2001, 33, A165.	1.9	0
82	Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent. Journal of Neuroscience Research, 2001, 66, 866-872.	2.9	41
83	Changes in glycolytic network and mitochondrial design in creatine kinase-deficient muscles. Muscle and Nerve, 2001, 24, 1188-1196.	2.2	48
84	Is creatine kinase responsible for fatigue? Studies of isolated skeletal muscle deficient in creatine kinase. FASEB Journal, 2000, 14, 982-990.	0.5	91
85	Myofibrillar or mitochondrial creatine kinase deficiency alone does not impair mouse diaphragm isotonic function. Journal of Applied Physiology, 2000, 88, 973-980.	2.5	17
86	Compromised Energetics in the Adenylate Kinase AK1Gene Knockout Heart under Metabolic Stress. Journal of Biological Chemistry, 2000, 275, 41424-41429.	3.4	75
87	Regulation of Alternative Splicing of CD45 by Antagonistic Effects of SR Protein Splicing Factors. Journal of Immunology, 2000, 164, 5287-5295.	0.8	51
88	Direct Evidence for the Control of Mitochondrial Respiration by Mitochondrial Creatine Kinase in Oxidative Muscle Cells in Situ. Journal of Biological Chemistry, 2000, 275, 6937-6944.	3.4	134
89	The zyxin-related protein TRIP6 interacts with PDZ motifs in the adaptor protein RIL and the protein tyrosine phosphatase PTP-BL. European Journal of Cell Biology, 2000, 79, 283-293.	3.6	65
90	Alternative splicing of CD45 pre-mRNA is uniquely obedient to conditions in lymphoid cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1446, 317-333.	2.4	8

#	Article	IF	CITATIONS
91	Identification and molecular characterization of BP75, a novel bromodomain-containing protein. FEBS Letters, 1999, 459, 291-298.	2.8	32
92	Title is missing!. Molecular and Cellular Biochemistry, 1998, 184, 183-194.	3.1	76
93	Cell surface GPI-anchoring of CD45 isoforms. Molecular Biology Reports, 1998, 25, 197-204.	2.3	3
94	Expanding complexity in myotonic dystrophy. BioEssays, 1998, 20, 901-912.	2.5	74
95	Developmental expression of the cell adhesion molecule-like protein tyrosine phosphatases LAR, RPTPÎ and RPTPÏ f in the mouse. Mechanisms of Development, 1998, 77, 59-62.	1.7	62
96	PDZ Motifs in PTP-BL and RIL Bind to Internal Protein Segments in the LIM Domain Protein RIL. Molecular Biology of the Cell, 1998, 9, 671-683.	2.1	131
97	Identification of a novel murine glutathione S-transferase class mu gene. Biochemical Journal, 1998, 330, 623-626.	3.7	6
98	Alterations in AMP deaminase activity and kinetics in skeletal muscle of creatine kinase-deficient mice. American Journal of Physiology - Cell Physiology, 1998, 274, C1411-C1416.	4.6	13
99	Absence of myofibrillar creatine kinase and diaphragm isometric function during repetitive activation. Journal of Applied Physiology, 1998, 84, 1166-1173.	2.5	19
100	Cytoarchitectural and metabolic adaptations in muscles with mitochondrial and cytosolic creatine kinase deficiencies. , 1998, , 183-194.		0
101	No Evidence for Involvement of Mouse Protein-tyrosine Phosphatase-BAS-like Fas-associated Phosphatase-1 in Fas-mediated Apoptosis. Journal of Biological Chemistry, 1997, 272, 30215-30220.	3.4	53
102	Mouse Choroideremia Gene Mutation Causes Photoreceptor Cell Degeneration and is not Transmitted through the Female Germline. Human Molecular Genetics, 1997, 6, 851-858.	2.9	67
103	Functional Equivalence of Creatine Kinase Isoforms in Mouse Skeletal Muscle. Journal of Biological Chemistry, 1997, 272, 17790-17794.	3.4	28
104	Impaired Mammary Gland Development and Function in Mice Lacking LAR Receptor-like Tyrosine Phosphatase Activity. Developmental Biology, 1997, 188, 134-146.	2.0	128
105	Altered Ca2+ Responses in Muscles with Combined Mitochondrial and Cytosolic Creatine Kinase Deficiencies. Cell, 1997, 89, 93-103.	28.9	250
106	The neuronal nitric oxide synthase PDZ motif binds to -G(D,E)XV*carboxyterminal sequences. FEBS Letters, 1997, 409, 53-56.	2.8	51
107	Combined myofibrillar and mitochondrial creatine kinase deficiency impairs mouse diaphragm isotonic function. Journal of Applied Physiology, 1997, 82, 1416-1423.	2.5	34
108	Receptor-like protein tyrosine phosphatases: alike and yet so different. Molecular Biology Reports, 1997, 24, 247-262.	2.3	45

#	Article	IF	CITATIONS
109	Use of gene targeting for compromising energy homeostasis in neuro-muscular tissues: The role of sarcomeric mitochondrial creatine kinase. Journal of Neuroscience Methods, 1997, 71, 29-41.	2.5	47
110	Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nature Genetics, 1996, 13, 316-324.	21.4	320
111	Protein-Tyrosine Phosphatases Expressed in Mouse Epidermal Keratinocytes. Journal of Investigative Dermatology, 1996, 106, 972-976.	0.7	8
112	Normal development, growth and reproduction in cellular retinoic acid binding protein-I (CRABPI) null mutant mice. Differentiation, 1995, 58, 141-148.	1.9	47
113	Molecular cloning of a mouse epithelial protein-tyrosine phosphatase with similarities to submembranous proteins. Journal of Cellular Biochemistry, 1995, 59, 418-430.	2.6	52
114	Production of native creatine kinase B in insect cells using a baculovirus expression vector. Molecular and Cellular Biochemistry, 1995, 143, 59-65.	3.1	7
115	Tissue- and cell-specific distribution of creatine kinase B: A new and highly specific monoclonal antibody for use in immunohistochemistry. Cell and Tissue Research, 1995, 280, 435-446.	2.9	62
116	Muscle Creatine Kinase-deficient Mice. Journal of Biological Chemistry, 1995, 270, 19914-19920.	3.4	70
117	Mouse Ubiquitous Mitochondrial Creatine Kinase: Gene Organization and Consequences from Inactivation in Mouse Embryonic Stem Cells. DNA and Cell Biology, 1995, 14, 539-553.	1.9	20
118	Inactivation of Apoe and Apoc1 by two consecutive rounds of gene targeting: effects on mRNA expression levels of gene cluster members. Human Molecular Genetics, 1995, 4, 1403-1409.	2.9	18
119	Muscle Creatine Kinase-deficient Mice. Journal of Biological Chemistry, 1995, 270, 19921-19929.	3.4	169
120	Mice deficient in ubiquitous mitochondrial creatine kinase are viable and fertile. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1230, 130-138.	1.0	48
121	Assignment of the Human Protein Tyrosine Phosphatase Epsilon (PTPRE) Gene to Chromosome 10q26 by Fluorescencein SituHybridization. Genomics, 1995, 30, 128-129.	2.9	1
122	The Mouse Gene Ptprf Encoding the Leukocyte Common Antigen-Related Molecule LAR: Cloning, Characterization, and Chromosomal Localization. Genomics, 1995, 27, 124-130.	2.9	19
123	Gene Targeting of the Receptor-Like Protein Tyrosine Phosphatase Lar by Homologous Recombination in Mouse Embryonic Stem Cells. , 1995, , 407-419.		0
124	Effects of the creatine analogue β-guanidinopropionic acid on skeletal muscles of mice deficient in muscle creatine kinase. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1185, 327-335.	1.0	39
125	Diet-induced hypercholesterolemia and atherosclerosis in heterozygous apolipoprotein E-deficient mice. Atherosclerosis, 1994, 111, 25-37.	0.8	141
126	Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell, 1993, 74, 621-631.	28.9	338

#	Article	IF	CITATIONS
127	Myotonic dystrophy kinase is a component of neuromuscular junctions. Human Molecular Genetics, 1993, 2, 1889-1894.	2.9	70
128	Reverse Mutation in Myotonic Dystrophy. New England Journal of Medicine, 1993, 328, 476-480.	27.0	97
129	Structure and genomic sequence of the myotonic dystrophy (DM kinase) gene. Human Molecular Genetics, 1993, 2, 299-304.	2.9	137
130	Dinucleotide repeat polymorphism at locus D19S207, close to the myotonic dystrophy (DM) gene. Human Molecular Genetics, 1993, 2, 333-333.	2.9	7
131	Genetic variability of the murine creatine kinase B gene locus and related pseudogenes in different inbred strains of mice. Genomics, 1992, 12, 340-349.	2.9	28
132	Prenatal diagnosis of myotonic dystrophy by direct mutation analysis. Lancet, The, 1992, 340, 237-238.	13.7	12
133	Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. Science, 1992, 255, 1253-1255.	12.6	1,614
134	Isolation of a edna for rat CHIP28 water channel: High mRNA expression in kidney cortex and inner medulla. Biochemical and Biophysical Research Communications, 1992, 188, 1267-1273.	2.1	55
135	Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature, 1992, 355, 548-551.	27.8	498
136	Expression of the gene encoding human brain creatine kinase depends on sequences immediately following the transcription start point. Gene, 1991, 102, 205-212.	2.2	21
137	Identification of variable simple sequence motifs in 19q13.2-qter: Markers for the myotonic dystrophy locus. Genomics, 1991, 9, 257-263.	2.9	38
138	Physical and genetic mapping of a novel chromosome 19 ERCC1 marker showing close linkage with myotonic dystrophy. Genomics, 1991, 9, 500-504.	2.9	21
139	MYOTONIC DYSTROPHY. Brain, 1991, 114, 2303-2311.	7.6	18
140	Cloning of a gene that is rearranged in patients with choroideraemia. Nature, 1990, 347, 674-677.	27.8	325
141	Complete nucleotide sequence of the human creatine kinase B gene. Nucleic Acids Research, 1989, 17, 6385-6385.	14.5	20
142	Nucleotide sequence of the human ornithine decarboxylase gene. Nucleic Acids Research, 1989, 17, 8855-8856.	14.5	26
143	Use of variable simple sequence motifs as genetic markers: application to study of myotonic dystrophy. Human Genetics, 1989, 83, 245-251.	3.8	78
144	Physical fine mapping of the choroideremia locus using Xq21 deletions associated with complex syndromes. Genomics, 1989, 4, 41-46.	2.9	101

#	Article	IF	CITATIONS
145	Definition of subchromosomal intervals around the myotonic dystrophy gene region at 19q. Genomics, 1989, 4, 384-396.	2.9	80
146	The recombinant DNA revolution: implications for diagnosis and prevention of inherited disease. European Journal of Obstetrics, Gynecology and Reproductive Biology, 1989, 32, 15-23.	1.1	0
147	The gene for X-linked progressive mixed deafness with perilymphatic gusher during stapes surgery (DFN3) is linked to PCK. Human Genetics, 1988, 80, 337-340.	3.8	66
148	Localization of the gene for X-linked Alport's syndrome. Kidney International, 1988, 34, 507-510.	5.2	78
149	Ncol RFLP at the creatine kinase-muscle type gene locus (CKMM, chromosome 19). Nucleic Acids Research, 1988, 16, 8743-8743.	14.5	28
150	Cloning and nucleotide sequence of rat ornithine decarboxylase cDNA. Gene, 1987, 60, 145-155.	2.2	68
151	Unusual splice sites revealed by mutagenic inactivation of an authentic splice site of the rabbit β-globin gene. Nature, 1983, 301, 38-43.	27.8	257
152	Translation in vivo and in vitro of mRNAs Coding for Vitellogenin, Serum Albumin and Very-Low-Density Lipoprotein II from Chicken Liver. A Difference in Translational Efficiency. FEBS Journal, 1981, 114, 635-641.	0.2	20
153	The nudeotide sequence of the Very Low Density Lipoprotein II mRNA from chicken. Nucleic Acids Research, 1981, 9, 489-501.	14.5	26
154	Purification of the mRNA for chicken very low density lipoproteirtlland molecular cloning of its full-length double-stranded cDNA. Nucleic Acids Research, 1979, 7, 2147-2163.	14.5	19
155	Translation of Vitellogenin mRNA in the Presence of 7-Methylguanosine 5'-Triphosphate. Cap Analogs Compete with mRNAs on the Basis of Affinity for Initiation-Complex Formation. FEBS Journal, 1979, 93, 469-479.	0.2	12
156	Purification of Vitellogenin mRNA and Serum Albumin mRNA from Avian Liver by Preparative Gel Electrophoresis. FEBS Journal, 1978, 89, 67-79.	0.2	25
157	Developmental and Functional Consequences of Disturbed Energetic Communication in Brain of Creatine Kinase–Deficient Mice: Understanding CK's Role in the Fuelling of Behavior and Learning. , 0, , 339-366.		1