PaweÅ, Jaruga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2008561/publications.pdf

Version: 2024-02-01

53794 33894 9,979 105 45 99 citations h-index g-index papers 108 108 108 11631 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polymorphic variant Asp239Tyr of human DNA glycosylase NTHL1 is inactive for removal of a variety of oxidatively-induced DNA base lesions from genomic DNA. DNA Repair, 2022, 117, 103372.	2.8	3
2	Inhibition by Tetrahydroquinoline Sulfonamide Derivatives of the Activity of Human 8-Oxoguanine DNA Glycosylase (OGG1) for Several Products of Oxidatively induced DNA Base Lesions. ACS Chemical Biology, 2021, 16, 45-51.	3.4	3
3	Ne-22 Ion-Beam Radiation Damage to DNA: From Initial Free Radical Formation to Resulting DNA-Base Damage. ACS Omega, 2021, 6, 16600-16611.	3.5	5
4	DNA glycosylase deficiency leads to decreased severity of lupus in the Polb-Y265C mouse model. DNA Repair, 2021, 105, 103152.	2.8	3
5	Recognition of DNA adducts by edited and unedited forms of DNA glycosylase NEIL1. DNA Repair, 2020, 85, 102741.	2.8	20
6	Heavy ion space radiation triggers ongoing DNA base damage by downregulating DNA repair pathways. Life Sciences in Space Research, 2020, 27, 27-32.	2.3	13
7	Expression of a germline variant in the N-terminal domain of the human DNA glycosylase NTHL1 induces cellular transformation without impairing enzymatic function or substrate specificity. Oncotarget, 2020, 11, 2262-2272.	1.8	6
8	Measurement of Oxidatively Induced DNA Damage in <i>Caenorhabditis elegans</i> with High-Salt DNA Extraction and Isotope-Dilution Mass Spectrometry. Analytical Chemistry, 2019, 91, 12149-12155.	6.5	5
9	Characterization of rare NEIL1 variants found in East Asian populations. DNA Repair, 2019, 79, 32-39.	2.8	9
10	Aflatoxin-Guanine DNA Adducts and Oxidatively Induced DNA Damage in Aflatoxin-Treated Mice <i>in Vivo</i> as Measured by Liquid Chromatography-Tandem Mass Spectrometry with Isotope Dilution. Chemical Research in Toxicology, 2019, 32, 80-89.	3.3	30
11	Identification and quantification of DNA repair protein poly(ADP ribose) polymerase 1 (PARP1) in human tissues and cultured cells by liquid chromatography/isotope-dilution tandem mass spectrometry. DNA Repair, 2019, 75, 48-59.	2.8	4
12	Excision release of 5?hydroxycytosine oxidatively induced DNA base lesions from the lung genome by cat dander extract challenge stimulates allergic airway inflammation. Clinical and Experimental Allergy, 2018, 48, 1676-1687.	2.9	3
13	Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. Mutation Research - Reviews in Mutation Research, 2017, 771, 99-127.	5 . 5	72
14	Biomarkers of oxidatively induced DNA damage in dreissenid mussels: A genotoxicity assessment tool for the Laurentian Great Lakes. Environmental Toxicology, 2017, 32, 2144-2153.	4.0	22
15	Exposure to Engineered Nanomaterials: Impact on DNA Repair Pathways. International Journal of Molecular Sciences, 2017, 18, 1515.	4.1	31
16	Combined Effects of High-Dose Bisphenol A and Oxidizing Agent (KBrO ₃) on Cellular Microenvironment, Gene Expression, and Chromatin Structure of Ku70-deficient Mouse Embryonic Fibroblasts. Environmental Health Perspectives, 2016, 124, 1241-1252.	6.0	20
17	Enhanced sensitivity of Neil1â^'/â^' mice to chronic UVB exposure. DNA Repair, 2016, 48, 43-50.	2.8	11
18	Production, Purification, and Characterization of 15N-Labeled DNA Repair Proteins as Internal Standards for Mass Spectrometric Measurements. Methods in Enzymology, 2016, 566, 305-332.	1.0	8

#	Article	IF	Citations
19	Bisphenol A Promotes Cell Survival Following Oxidative DNA Damage in Mouse Fibroblasts. PLoS ONE, 2015, 10, e0118819.	2.5	49
20	Small Molecule Inhibitors of 8-Oxoguanine DNA Glycosylase-1 (OGG1). ACS Chemical Biology, 2015, 10, 2334-2343.	3.4	72
21	Addiction to MTH1 protein results in intense expression in human breast cancer tissue as measured by liquid chromatography-isotope-dilution tandem mass spectrometry. DNA Repair, 2015, 33, 101-110.	2.8	29
22	Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radical Research, 2015, 49, 525-548.	3.3	66
23	Extreme Expression of DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Human Breast Cancer As Measured by Liquid Chromatography and Isotope Dilution Tandem Mass Spectrometry. Biochemistry, 2015, 54, 5787-5790.	2.5	27
24	Significant disparity in base and sugar damage in DNA resulting from neutron and electron irradiation. Journal of Radiation Research, 2014, 55, 1081-1088.	1.6	10
25	Identification and Quantification of Human DNA Repair Protein NEIL1 by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry. Journal of Proteome Research, 2013, 12, 1049-1061.	3.7	22
26	Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1. Nucleic Acids Research, 2013, 41, 5368-5381.	14.5	40
27	Identification and Quantification of DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Human Cells by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry. PLoS ONE, 2013, 8, e69894.	2.5	22
28	Inhibition of DNA Glycosylases via Small Molecule Purine Analogs. PLoS ONE, 2013, 8, e81667.	2.5	35
29	Mechanisms of free radical-induced damage to DNA. Free Radical Research, 2012, 46, 382-419.	3.3	543
30	Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine. DNA Repair, 2012, 11, 714-725.	2.8	46
31	RNA oxidation catalyzed by cytochrome c leads to its depurination and cross-linking, which may facilitate cytochrome c release from mitochondria. Free Radical Biology and Medicine, 2012, 53, 854-862.	2.9	18
32	Copper Oxide Nanoparticle Mediated DNA Damage in Terrestrial Plant Models. Environmental Science & Env	10.0	424
33	DNA Damage Products (5′ <i>R</i>)- and (5′ <i>S</i>)-8,5′-Cyclo-2′-deoxyadenosines as Potential Biom in Human Urine for Atherosclerosis. Biochemistry, 2012, 51, 1822-1824.	narkers 2.5	37
34	A Major Role for Nonenzymatic Antioxidant Processes in the Radioresistance of Halobacterium salinarum. Journal of Bacteriology, 2011, 193, 1653-1662.	2.2	59
35	Identification and Quantification of DNA Repair Proteins by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry Using Their Fully $\langle \sup 15 \rangle$ Sup $\langle 15 \rangle$ N-Labeled Analogues as Internal Standards. Journal of Proteome Research, 2011, 10, 3802-3813.	3.7	19
36	Stable isotope-labeling of DNA repair proteins, and their purification and characterization. Protein Expression and Purification, 2011, 78, 94-101.	1.3	19

#	Article	IF	CITATIONS
37	Evidence for upregulated repair of oxidatively induced DNA damage in human colorectal cancer. DNA Repair, 2011, 10, 1114-1120.	2.8	23
38	The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair, 2010, 9, 177-190.	2.8	43
39	The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4925-4930.	7.1	169
40	Evidence for the Involvement of DNA Repair Enzyme NEIL1 in Nucleotide Excision Repair of $(5\hat{a}\in^2R)$ and $(5\hat{a}\in^2S)-8,5\hat{a}\in^2$ -Cyclo- $2\hat{a}\in^2$ -deoxyadenosines. Biochemistry, 2010, 49, 1053-1055.	2.5	50
41	Identification and quantification of $(5\hat{a}\in ^2R)$ - and $(5\hat{a}\in ^2S)$ -8,5 $\hat{a}\in ^2$ -cyclo-2 $\hat{a}\in ^2$ -deoxyadenosines in human urine as putative biomarkers of oxidatively induced damage to DNA. Biochemical and Biophysical Research Communications, 2010, 397, 48-52.	2.1	28
42	Accumulation of (5â€2S)-8,5â€2-cyclo-2â€2-deoxyadenosine in organs of Cockayne syndrome complementation group B gene knockout mice. DNA Repair, 2009, 8, 274-278.	2.8	66
43	Plant and fungal Fpg homologs are formamidopyrimidine DNA glycosylases but not 8-oxoguanine DNA glycosylases. DNA Repair, 2009, 8, 643-653.	2.8	33
44	Targeted deletion of the genes encoding NTH1 and NEIL1 DNA N-glycosylases reveals the existence of novel carcinogenic oxidative damage to DNA. DNA Repair, 2009, 8, 786-794.	2.8	101
45	Substrate specificity and excision kinetics of natural polymorphic variants and phosphomimetic mutants of human 8â€oxoguanineâ€DNA glycosylase. FEBS Journal, 2009, 276, 5149-5162.	4.7	41
46	Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, <i>Halobacterium salinarum</i> NRCâ€1. Environmental Microbiology, 2009, 11, 1066-1078.	3.8	58
47	Glutathione Depletion by Buthionine Sulfoximine Induces Oxidative Damage to DNA in Organs of Rabbits in Vivo. Biochemistry, 2009, 48, 4980-4987.	2.5	25
48	Measurement of $(5\hat{a} \in ^2R)$ - and $(5\hat{a} \in ^2S)$ -8,5 $\hat{a} \in ^2$ -cyclo-2 $\hat{a} \in ^2$ -deoxyadenosines in DNA in vivo by liquid chromatography/isotope-dilution tandem mass spectrometry. Biochemical and Biophysical Research Communications, 2009, 386, 656-660.	2.1	38
49	Oxidative DNA damage in polymorphonuclear leukocytes of patients with familial Mediterranean fever. Free Radical Biology and Medicine, 2008, 44, 386-393.	2.9	45
50	Formamidopyrimidines in DNA: Mechanisms of formation, repair, and biological effects. Free Radical Biology and Medicine, 2008, 45, 1610-1621.	2.9	102
51	Measurement of formamidopyrimidines in DNA. Free Radical Biology and Medicine, 2008, 45, 1601-1609.	2.9	50
52	8,5′-Cyclopurine-2′-deoxynucleosides in DNA: Mechanisms of formation, measurement, repair and biological effects. DNA Repair, 2008, 7, 1413-1425.	2.8	104
53	Human Polymorphic Variants of the NEIL1 DNA Glycosylase. Journal of Biological Chemistry, 2007, 282, 15790-15798.	3.4	70
54	Accumulation of Oxidatively Induced DNA Damage in Human Breast Cancer Cell Lines Following Treatment with Hydrogen Peroxide. Cell Cycle, 2007, 6, 1471-1477.	2.6	50

#	Article	IF	CITATIONS
55	Lymphoblasts of Women with BRCA1 Mutations Are Deficient in Cellular Repair of 8,5â€~-Cyclopurine-2â€~-deoxynucleosides and 8-Hydroxy-2â€~-deoxyguanosine. Biochemistry, 2007, 46, 2488-2496.	2.5	52
56	The role of CSA in the response to oxidative DNA damage in human cells. Oncogene, 2007, 26, 4336-4343.	5.9	133
57	The oxidatively induced DNA lesions 8,5′-cyclo-2′-deoxyadenosine and 8-hydroxy-2′-deoxyadenosine are strongly resistant to acid-induced hydrolysis of the glycosidic bond. Mechanisms of Ageing and Development, 2007, 128, 494-502.	4.6	26
58	Accumulation of oxidatively induced DNA damage in human breast cancer cell lines following treatment with hydrogen peroxide. Cell Cycle, 2007, 6, 1472-8.	2.6	23
59	Molecular Analysis of Base Damage Clustering Associated with a Site-Specific Radiation-Induced DNA Double-Strand Break. Radiation Research, 2006, 166, 767-781.	1.5	40
60	New functions of XPC in the protection of human skin cells from oxidative damage. EMBO Journal, 2006, 25, 4305-4315.	7.8	227
61	Reduced repair of 8-hydroxyguanine in the human breast cancer cell line, HCC1937. BMC Cancer, 2006, 6, 297.	2.6	28
62	Oxidative Changes in the DNA of Stroma and Epithelium from the Female Breast: Potential Implications for Breast Cancer. Cell Cycle, 2006, 5, 1629-1632.	2.6	32
63	Structural Alterations in Breast Stromal and Epithelial DNA: The Influence of 8,5-cyclo-2-Deoxyadenosine. Cell Cycle, 2006, 5, 1240-1244.	2.6	29
64	Linking uracil base excision repair and 5-fluorouracil toxicity in yeast. Nucleic Acids Research, 2006, 34, 140-151.	14.5	1,877
65	Biomarkers Signal Contaminant Effects on the Organs of English Sole (Parophrys vetulus) from Puget Sound. Environmental Health Perspectives, 2006, 114, 823-829.	6.0	32
66	Regulation of reactive oxygen species, DNA damage and c-Myc function by peroxiredoxin 1. Oncogene, 2005, 24, 8038-8050.	5.9	205
67	Repair of Formamidopyrimidines in DNA Involves Different Glycosylases. Journal of Biological Chemistry, 2005, 280, 40544-40551.	3.4	174
68	Polyamines stimulate the formation of mutagenic 1,N2-propanodeoxyguanosine adducts from acetaldehyde. Nucleic Acids Research, 2005, 33, 3513-3520.	14.5	128
69	Measurement of DNA Biomarkers for the Safety of Tissue-Engineered Medical Products, Using Artificial Skin as a Model. Tissue Engineering, 2004, 10, 1332-1345.	4.6	8
70	Complete release of (5'S)-8,5'-cyclo-2'-deoxyadenosine from dinucleotides, oligodeoxynucleotides and DNA, and direct comparison of its levels in cellular DNA with other oxidatively induced DNA lesions. Nucleic Acids Research, 2004, 32, e87-e87.	14.5	65
71	Cellular repair of oxidatively induced DNA base lesions is defective in prostate cancer cell lines, PC-3 and DU-145. Carcinogenesis, 2004, 25, 1359-1370.	2.8	82
72	Mouse NEIL1 Protein Is Specific for Excision of 2,6-Diamino-4-hydroxy-5-formamidopyrimidine and 4,6-Diamino-5-formamidopyrimidine from Oxidatively Damaged DNA. Biochemistry, 2004, 43, 15909-15914.	2.5	89

#	Article	IF	Citations
73	Overexpression and rapid purification of Escherichia coli formamidopyrimidine–DNA glycosylase. Protein Expression and Purification, 2004, 34, 126-133.	1.3	21
74	Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Research, 2003, 31, 2995-3005.	14.5	99
75	Arabidopsis thalianaOgg1 Protein Excises 8-Hydroxyguanine and 2,6-Diamino-4-hydroxy-5-formamidopyrimidine from Oxidatively Damaged DNA Containing Multiple Lesions. Biochemistry, 2003, 42, 3089-3095.	2.5	38
76	DNA Base Damage by the Antitumor Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine). Journal of the American Chemical Society, 2003, 125, 11607-11615.	13.7	85
77	Oxidative DNA Base Modifications and Polycyclic Aromatic Hydrocarbon DNA Adducts in Squamous Cell Carcinoma of Larynx. Free Radical Research, 2003, 37, 231-240.	3.3	36
78	Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8â€hydroxyguanine and 8â€hydroxyadenine resulting from oxidative stress. FASEB Journal, 2003, 17, 668-674.	0.5	140
79	Oxidative DNA Damage Biomarkers Used in Tissue Engineered Skin. Advances in Experimental Medicine and Biology, 2003, 534, 129-135.	1.6	4
80	Biomarkers Used to Detect Genetic Damage in Tissue Engineered Skin. Advances in Experimental Medicine and Biology, 2003, 534, 137-145.	1.6	0
81	Determination of Active Site Residues in Escherichia coli Endonuclease VIII. Journal of Biological Chemistry, 2002, 277, 2938-2944.	3.4	43
82	The Cockayne Syndrome Group B Gene Product Is Involved in Cellular Repair of 8-Hydroxyadenine in DNA. Journal of Biological Chemistry, 2002, 277, 30832-30837.	3.4	88
83	Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3523-3528.	7.1	459
84	Mass Spectrometric Assays for the Tandem Lesion 8,5â€~-Cyclo-2â€~-deoxyguanosine in Mammalian DNA. Biochemistry, 2002, 41, 3703-3711.	2.5	88
85	Supplementation with antioxidant vitamins prevents oxidative modification of DNA in lymphocytes of HIV-infected patients. Free Radical Biology and Medicine, 2002, 32, 414-420.	2.9	82
86	Free radical-induced damage to DNA: mechanisms and measurement 1,2 1This article is part of a series of reviews on "Oxidative DNA Damage and Repair.―The full list of papers may be found on the homepage of the journal. 2Guest Editor: Miral Dizdaroglu. Free Radical Biology and Medicine, 2002, 32, 1102-1115.	2.9	814
87	Oxidative DNA damage: assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome1 1This article is part of a series of reviews on "Oxidative DNA Damage and Repair.―The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002, 33, 192-200.	2.9	258
88	Chlorella Virus Pyrimidine Dimer Glycosylase Excises Ultraviolet Radiation- and Hydroxyl Radical-induced Products 4,6-Diamino-5-formamidopyrimidine and 2,6-Diamino-4-hydroxy-5-formamidopyrimidine from DNA¶. Photochemistry and Photobiology, 2002, 75, 85-91.	2.5	0
89	Chlorella Virus Pyrimidine Dimer Glycosylase Excises Ultraviolet Radiation– and Hydroxyl Radical–induced Products 4,6-Diamino-5-formamidopyrimidine and 2,6-Diamino-4-hydroxy-5-formamidopyrimidine from DNA¶. Photochemistry and Photobiology, 2002, 75, 85.	2.5	22
90	Substrate Specificity and Excision Kinetics ofEscherichia coliEndonuclease VIII (Nei) for Modified Bases in DNA Damaged by Free Radicalsâ€. Biochemistry, 2001, 40, 12150-12156.	2.5	46

#	Article	IF	Citations
91	Identification and quantification of 8,5′-cyclo-2′-deoxy-adenosine in DNA by liquid chromatography/mass spectrometry. Free Radical Biology and Medicine, 2001, 30, 774-784.	2.9	79
92	Measurement of 8-hydroxy-2′-deoxyadenosine in DNA by liquid chromatography/mass spectrometry. Free Radical Biology and Medicine, 2001, 31, 336-344.	2.9	37
93	The Cockayne Syndrome Group B Gene Product Is Involved in General Genome Base Excision Repair of 8-Hydroxyguanine in DNA. Journal of Biological Chemistry, 2001, 276, 45772-45779.	3.4	138
94	Measurement of 8-hydroxy-2'-deoxyguanosine in DNA by high-performance liquid chromatography-mass spectrometry: comparison with measurement by gas chromatography-mass spectrometry. Nucleic Acids Research, 2001, 29, 12e-12.	14.5	109
95	Oxidative DNA base damage in lymphocytes of HIV-infected drug users. Free Radical Research, 1999, 31, 197-200.	3.3	11
96	Estimation Of Free Radical Induced DNA Base Damages in Cancerous- and HIV Infected Patients and in Healthy Subjects., 1999,, 353-369.		0
97	Oxidative DNA base damage in cancerous tissues of patients undergoing brachytherapy. Cancer Letters, 1998, 132, 169-173.	7.2	2
98	Epirubicin-Induced Oxidative DNA Damage and Evidence for Its Repair in Lymphocytes of Cancer Patients Who Are Undergoing Chemotherapy. Molecular Pharmacology, 1997, 52, 882-885.	2.3	37
99	Kinetics of excision of purine lesions from DNA by Escherichia coli Fpg protein. Nucleic Acids Research, 1997, 25, 474-479.	14.5	142
100	Oxidative DNA base damage and its repair in kidneys and livers of nickel(II)-treated male F344 rats. Carcinogenesis, 1997, 18, 271-277.	2.8	58
101	Characterization and Mechanism of Action of DrosophilaRibosomal Protein S3 DNA Glycosylase Activity for the Removal of Oxidatively Damaged DNA Bases. Journal of Biological Chemistry, 1997, 272, 32857-32860.	3.4	77
102	DNA base damage in lymphocytes of cancer patients undergoing radiation therapy. Cancer Letters, 1996, 106, 207-215.	7.2	31
103	DNA Damage and DNA Sequence Retrieval from Ancient Tissues. Nucleic Acids Research, 1996, 24, 1304-1307.	14.5	338
104	Repair of products of oxidative DNA base damage in human cells. Nucleic Acids Research, 1996, 24, 1389-1394.	14.5	233
105	Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Letters, 1994, 341, 59-64.	2.8	206