Hydar Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2007433/publications.pdf

Version: 2024-02-01

		126907	168389
56	3,571	33	53
papers	citations	h-index	g-index
5.6	56	56	2060
56	36	56	2868
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mas-Related G Protein–Coupled Receptor-X2 and Its Role in Non-immunoglobulin E–Mediated Drug Hypersensitivity. Immunology and Allergy Clinics of North America, 2022, 42, 269-284.	1.9	6
2	Role of MrgprB2 in Rosacea-Like Inflammation in Mice: Modulation by \hat{l}^2 -Arrestin 2. Journal of Investigative Dermatology, 2022, 142, 2988-2997.e3.	0.7	6
3	MRGPRX2 Is the Codeine Receptor of Human Skin Mast Cells: Desensitization through \hat{l}^2 -Arrestin and Lack of Correlation with the FclµRl Pathway. Journal of Investigative Dermatology, 2021, 141, 1286-1296.e4.	0.7	39
4	MRGPRX2 Activation by Rocuronium: Insights from Studies with Human Skin Mast Cells and Missense Variants. Cells, 2021, 10, 156.	4.1	24
5	Authentic and Ectopically Expressed MRGPRX2 Elicit Similar Mechanisms to Stimulate Degranulation of Mast Cells. Cells, 2021, 10, 376.	4.1	12
6	Substance P Serves as a Balanced Agonist for MRGPRX2 and a Single Tyrosine Residue Is Required for \hat{l}^2 -Arrestin Recruitment and Receptor Internalization. International Journal of Molecular Sciences, 2021, 22, 5318.	4.1	21
7	Murepavadin, a Small Molecule Host Defense Peptide Mimetic, Activates Mast Cells via MRGPRX2 and MrgprB2. Frontiers in Immunology, 2021, 12, 689410.	4.8	10
8	Expression of MRGPRX2 in skin mast cells of patients with maculopapular cutaneous mastocytosis. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3841-3843.e1.	3.8	16
9	Multifaceted MRGPRX2: New insight into the role of mast cells in health and disease. Journal of Allergy and Clinical Immunology, 2021, 148, 293-308.	2.9	66
10	Revisiting the role of MRGPRX2 on hypersensitivity reactions to neuromuscular blocking drugs. Current Opinion in Immunology, 2021, 72, 65-71.	5.5	8
11	Mast Cell-Specific MRGPRX2: a Key Modulator of Neuro-Immune Interaction in Allergic Diseases. Current Allergy and Asthma Reports, 2021, 21, 3.	5.3	48
12	Inhibition of Orai Channel Function Regulates Mas-Related G Protein-Coupled Receptor-Mediated Responses in Mast Cells. Frontiers in Immunology, 2021, 12, 803335.	4.8	7
13	Roles of a Mast Cell–Specific Receptor MRGPRX2 in Host Defense and Inflammation. Journal of Dental Research, 2020, 99, 882-890.	5.2	18
14	Identification of Gain and Loss of Function Missense Variants in MRGPRX2's Transmembrane and Intracellular Domains for Mast Cell Activation by Substance P. International Journal of Molecular Sciences, 2019, 20, 5247.	4.1	51
15	\hat{l}^2 -Arrestin2 expressed in mast cells regulates ciprofloxacin-induced pseudoallergy and IgE-mediated anaphylaxis. Journal of Allergy and Clinical Immunology, 2019, 144, 603-606.	2.9	24
16	Small-Molecule Host-Defense Peptide Mimetic Antibacterial and Antifungal Agents Activate Human and Mouse Mast Cells via Mas-Related GPCRs. Cells, 2019, 8, 311.	4.1	21
17	Angiogenic Host Defense Peptide AG-30/5C and Bradykinin B2 Receptor Antagonist Icatibant Are G Protein Biased Agonists for MRGPRX2 in Mast Cells. Journal of Immunology, 2019, 202, 1229-1238.	0.8	38
18	Naturally Occurring Missense MRGPRX2 Variants Display Loss of Function Phenotype for Mast Cell Degranulation in Response to Substance P, Hemokinin-1, Human \hat{l}^2 -Defensin-3, and Icatibant. Journal of Immunology, 2018, 201, 343-349.	0.8	57

#	Article	IF	Citations
19	Upregulation of Mas-related G Protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1. Respiratory Research, 2018, 19, 1.	3.6	146
20	Differential Regulation of Mas-Related G Protein-Coupled Receptor X2-Mediated Mast Cell Degranulation by Antimicrobial Host Defense Peptides and Porphyromonas gingivalis Lipopolysaccharide. Infection and Immunity, 2017, 85, .	2.2	21
21	Emerging Roles for MAS-Related G Protein-Coupled Receptor-X2 in Host Defense Peptide, Opioid, and Neuropeptide-Mediated Inflammatory Reactions. Advances in Immunology, 2017, 136, 123-162.	2.2	66
22	Mas-Related G Protein Coupled Receptor-X2: A Potential New Target for Modulating Mast Cell-Mediated Allergic and Inflammatory Diseases. Journal of Immunobiology, 2016, 01, .	0.3	28
23	Roles of Mas-related G protein–coupled receptor X2 on mast cell–mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. Journal of Allergy and Clinical Immunology, 2016, 138, 700-710.	2.9	309
24	Modulation of host defense peptide-mediated human mast cell activation by LPS. Innate Immunity, 2016, 22, 21-30.	2.4	39
25	Mas-related G protein coupled receptor-X2: A potential new target for modulating mast cell-mediated allergic and inflammatory diseases. , $2016,1,.$		12
26	Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget, 2015, 6, 28573-28587.	1.8	36
27	Regulation of FcϵRI Signaling in Mast Cells by G Protein-coupled Receptor Kinase 2 and Its RH Domain. Journal of Biological Chemistry, 2014, 289, 20917-20927.	3.4	16
28	\hat{l}^2 -Defensins Activate Human Mast Cells via Mas-Related Gene X2. Journal of Immunology, 2013, 191, 345-352.	0.8	118
29	Roles for NHERF1 and NHERF2 on the Regulation of C3a Receptor Signaling in Human Mast Cells. PLoS ONE, 2012, 7, e51355.	2.5	13
30	Phosphorylation of C3a Receptor at Multiple Sites Mediates Desensitization, \hat{l}^2 -Arrestin-2 Recruitment and Inhibition of NF- \hat{l}^9 B Activity in Mast Cells. PLoS ONE, 2012, 7, e46369.	2.5	20
31	G protein coupled receptor specificity for C3a and compound 48/80-induced degranulation in human mast cells: Roles of Mas-related genes MrgX1 and MrgX2. European Journal of Pharmacology, 2011, 668, 299-304.	3.5	98
32	Mas-related Gene X2 (MrgX2) Is a Novel G Protein-coupled Receptor for the Antimicrobial Peptide LL-37 in Human Mast Cells. Journal of Biological Chemistry, 2011, 286, 44739-44749.	3.4	195
33	PMX-53 as a Dual CD88 Antagonist and an Agonist for Mas-Related Gene 2 (MrgX2) in Human Mast Cells. Molecular Pharmacology, 2011, 79, 1005-1013.	2.3	89
34	Distinct and Shared Roles of \hat{l}^2 -Arrestin-1 and \hat{l}^2 -Arrestin-2 on the Regulation of C3a Receptor Signaling in Human Mast Cells. PLoS ONE, 2011, 6, e19585.	2.5	55
35	Regulation of C3a Receptor Signaling in Human Mast Cells by G Protein Coupled Receptor Kinases. PLoS ONE, 2011, 6, e22559.	2.5	45
36	Aktâ€1 mediates survival of chondrocytes from endoplasmic reticulumâ€induced stress. Journal of Cellular Physiology, 2010, 222, 502-508.	4.1	41

#	Article	lF	Citations
37	Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a. Immunology Letters, 2010, 128, 36-45.	2.5	105
38	C3a Receptors Signaling in Mast Cells. , 2007, 598, 126-140.		3
39	Airway smooth muscle cells enhance C3aâ€induced mast cell degranulation following cellâ€cell contact. FASEB Journal, 2005, 19, 1-22.	0.5	48
40	Distinct regulation of C3a-induced MCP-1/CCL2 and RANTES/CCL5 production in human mast cells by extracellular signal regulated kinase and PI3 kinase. Molecular Immunology, 2005, 42, 581-587.	2.2	108
41	Anaphylatoxin C3a receptors in asthma. Respiratory Research, 2005, 6, 19.	3.6	40
42	Platelet-activating Factor-induced Chemokine Gene Expression Requires NF-ÎB Activation and Ca2+/Calcineurin Signaling Pathways. Journal of Biological Chemistry, 2004, 279, 44606-44612.	3.4	35
43	C3a Enhances Nerve Growth Factor-Induced NFAT Activation and Chemokine Production in a Human Mast Cell Line, HMC-1. Journal of Immunology, 2004, 172, 6961-6968.	0.8	47
44	Distinct Roles of Receptor Phosphorylation, G Protein Usage, and Mitogen-activated Protein Kinase Activation on Platelet Activating Factor-induced Leukotriene C4 Generation and Chemokine Production. Journal of Biological Chemistry, 2002, 277, 22685-22691.	3.4	20
45	Cutting Edge: Differential Regulation of Chemoattractant Receptor-Induced Degranulation and Chemokine Production by Receptor Phosphorylation. Journal of Immunology, 2001, 167, 3559-3563.	0.8	34
46	Chemokine Production by G Protein-Coupled Receptor Activation in a Human Mast Cell Line: Roles of Extracellular Signal-Regulated Kinase and NFAT. Journal of Immunology, 2000, 165, 7215-7223.	0.8	61
47	Chemoattractant Receptor Cross-desensitization. Journal of Biological Chemistry, 1999, 274, 6027-6030.	3.4	236
48	Regulation of Human Chemokine Receptors CXCR4. Journal of Biological Chemistry, 1997, 272, 28726-28731.	3.4	260
49	MECHANISMS OF INFLAMMATION AND LEUKOCYTE ACTIVATION. Medical Clinics of North America, 1997, 81, 1-28.	2.5	87
50	Cross-desensitization Among Receptors for Platelet Activating Factor and Peptide Chemoattractants. Journal of Biological Chemistry, 1996, 271, 28717-28724.	3.4	41
51	Regulation of Human Interleukin-8 Receptor A: Identification of a Phosphorylation Site Involved in Modulating Receptor Functions. Biochemistry, 1995, 34, 14193-14201.	2.5	95
52	Regulation of stably transfected platelet activating factor receptor in RBL-2H3 cells. Role of multiple G proteins and receptor phosphorylation Journal of Biological Chemistry, 1994, 269, 24557-24563.	3.4	133
53	Regulation of stably transfected platelet activating factor receptor in RBL-2H3 cells. Role of multiple G proteins and receptor phosphorylation. Journal of Biological Chemistry, 1994, 269, 24557-63.	3.4	116
54	Differences in phosphorylation of formylpeptide and C5a chemoattractant receptors correlate with differences in desensitization Journal of Biological Chemistry, 1993, 268, 24247-24254.	3.4	148

#	Article	lF	CITATIONS
55	Differences in phosphorylation of formylpeptide and C5a chemoattractant receptors correlate with differences in desensitization. Journal of Biological Chemistry, 1993, 268, 24247-54.	3.4	130
56	Spatiotemporal Patterns of Substance P-Bound MRGPRX2 Reveal a Novel Connection Between Macropinosome Resolution and Secretory Granule Regeneration in Mast Cells. Frontiers in Immunology, 0, 13, .	4.8	5