Eliot Quataert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2005231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. Monthly Notices of the Royal Astronomical Society, 2014, 445, 581-603.	1.6	1,068
2	Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2650-2662.	1.6	881
3	On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentumâ€driven Winds. Astrophysical Journal, 2005, 618, 569-585.	1.6	860
4	Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature, 2017, 551, 80-84.	13.7	814
5	ASTROPHYSICAL GYROKINETICS: KINETIC AND FLUID TURBULENT CASCADES IN MAGNETIZED WEAKLY COLLISIONAL PLASMAS. Astrophysical Journal, Supplement Series, 2009, 182, 310-377.	3.0	697
6	FIRE-2 simulations: physics versus numerics in galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 800-863.	1.6	676
7	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. Astrophysical Journal Letters, 2017, 848, L17.	3.0	656
8	Radiation Pressure–supported Starburst Disks and Active Galactic Nucleus Fueling. Astrophysical Journal, 2005, 630, 167-185.	1.6	616
9	Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A*. Astrophysical Journal, 2003, 598, 301-312.	1.6	576
10	The FIELDS Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 49-82.	3.7	521
11	The protomagnetar model for gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2031-2056.	1.6	493
12	Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2691-2713.	1.6	478
13	A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star. Science, 2011, 333, 203-206.	6.0	448
14	RECONCILING DWARF GALAXIES WITH ♭CDM COSMOLOGY: SIMULATING A REALISTIC POPULATION OF SATELLITES AROUND A MILKY WAY–MASS GALAXY. Astrophysical Journal Letters, 2016, 827, L23.	3.0	430
15	Stellar feedback in galaxies and the origin of galaxy-scale winds. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3522-3537.	1.6	425
16	How do massive black holes get their gas?. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1529-1564.	1.6	415
17	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. Astrophysical Journal Letters, 2017, 848, L16.	3.0	392
18	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South. Astrophysical Journal Letters, 2017, 848, L19.	3.0	390

#	Article	IF	CITATIONS
19	Self-regulated star formation in galaxies via momentum input from massive stars. Monthly Notices of the Royal Astronomical Society, 2011, 417, 950-973.	1.6	389
20	The physics of galactic winds driven by active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2012, 425, 605-622.	1.6	375
21	THE DISRUPTION OF GIANT MOLECULAR CLOUDS BY RADIATION PRESSURE & amp; THE EFFICIENCY OF STAR FORMATION IN GALAXIES. Astrophysical Journal, 2010, 709, 191-209.	1.6	373
22	Magnetic Fluctuation Power Near Proton Temperature Anisotropy Instability Thresholds in the Solar Wind. Physical Review Letters, 2009, 103, 211101.	2.9	371
23	Convectionâ€dominated Accretion Flows. Astrophysical Journal, 2000, 539, 809-814.	1.6	347
24	Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Monthly Notices of the Royal Astronomical Society, 2008, 385, 1455-1460.	1.6	310
25	The origin and evolution of the galaxy mass–metallicity relation. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2140-2156.	1.6	307
26	Magnetar Spinâ€Down, Hyperenergetic Supernovae, and Gammaâ€Ray Bursts. Astrophysical Journal, 2004, 611, 380-393.	1.6	296
27	Forged in fire: cusps, cores and baryons in low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2092-2106.	1.6	291
28	The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4698-4719.	1.6	289
29	A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind. Journal of Geophysical Research, 2008, 113, .	3.3	281
30	The Distribution and Cosmic Evolution of Massive Black Hole Spins. Astrophysical Journal, 2005, 620, 69-77.	1.6	277
31	A faint type of supernova from a white dwarf with a helium-rich companion. Nature, 2010, 465, 322-325.	13.7	273
32	Wave-driven mass loss in the last year of stellar evolution: setting the stage for the most luminous core-collapse supernovae. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 423, L92-L96.	1.2	272
33	Thermal instability and the feedback regulation of hot haloes in clusters, groups and galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 420, 3174-3194.	1.6	271
34	Astrophysical Gyrokinetics: Basic Equations and Linear Theory. Astrophysical Journal, 2006, 651, 590-614.	1.6	265
35	Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3319-3337.	1.6	265
36	The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2981-3001.	1.6	260

#	Article	IF	CITATIONS
37	Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letters, 2008, 100, 065004.	2.9	254
38	PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVÉN-WAVE TURBULENCE IN THE SOLAR WIND. Astrophysical Journal, 2010, 720, 503-515.	1.6	248
39	The structure of the interstellar medium of star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3488-3521.	1.6	248
40	Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxiesÂ. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1709-1727.	1.6	242
41	Supernova feedback in an inhomogeneous interstellar medium. Monthly Notices of the Royal Astronomical Society, 2015, 450, 504-522.	1.6	216
42	Short gamma-ray bursts with extended emission from magnetar birth: jet formation and collimation. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1537-1545.	1.6	212
43	The diversity of transients from magnetar birth in core collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3311-3316.	1.6	209
44	Long-term GRMHD simulations of neutron star merger accretion discs: implications for electromagnetic counterparts. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3373-3393.	1.6	207
45	Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales. Physical Review Letters, 2011, 107, 035004.	2.9	205
46	An analytic model of angular momentum transport by gravitational torques: from galaxies to massive black holes. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1027-1050.	1.6	199
47	Particle Heating by Alfvenic Turbulence in Hot Accretion Flows. Astrophysical Journal, 1998, 500, 978-991.	1.6	183
48	Red mergers and the assembly of massive elliptical galaxies: the fundamental plane and its projections. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1081-1089.	1.6	180
49	THE PHYSICS OF THE FAR-INFRARED-RADIO CORRELATION. I. CALORIMETRY, CONSPIRACY, AND IMPLICATIONS. Astrophysical Journal, 2010, 717, 1-28.	1.6	179
50	Turbulence and Particle Heating in Advectionâ€dominated Accretion Flows. Astrophysical Journal, 1999, 520, 248-255.	1.6	177
51	Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 472, L109-L114.	1.2	176
52	THE LONG-TERM EVOLUTION OF DOUBLE WHITE DWARF MERGERS. Astrophysical Journal, 2012, 748, 35.	1.6	174
53	Magnetized gas clouds can survive acceleration by a hot wind. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2-7.	1.6	174
54	Electron Heating in Hot Accretion Flows. Astrophysical Journal, 2007, 667, 714-723.	1.6	170

#	Article	IF	CITATIONS
55	A Magnetar Origin for the Kilonova Ejecta in GW170817. Astrophysical Journal, 2018, 856, 101.	1.6	168
56	Shearing Box Simulations of the MRI in a Collisionless Plasma. Astrophysical Journal, 2006, 637, 952-967.	1.6	163
57	An origin for multiphase gas in galactic winds and haloes. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1830-1844.	1.6	160
58	Feedback-regulated star formation in molecular clouds and galactic discs. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1970-1990.	1.6	152
59	Ion heating resulting from pickup in magnetic reconnection exhausts. Journal of Geophysical Research, 2009, 114, .	3.3	151
60	On the Nature of the Variable Infrared Emission from Sagittarius A*. Astrophysical Journal, 2004, 606, 894-899.	1.6	148
61	Magnetized relativistic jets and long-duration GRBs from magnetar spin-down during core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2009, 396, 2038-2050.	1.6	148
62	Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy. Monthly Notices of the Royal Astronomical Society, 2015, 447, 140-148.	1.6	148
63	ON THE GeV AND TeV DETECTIONS OF THE STARBURST GALAXIES M82 AND NGC 253. Astrophysical Journal, 2011, 734, 107.	1.6	147
64	Buoyancy Instabilities in Weakly Magnetized Low ollisionality Plasmas. Astrophysical Journal, 2008, 673, 758-762.	1.6	146
65	Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows. Monthly Notices of the Royal Astronomical Society, 2016, 458, 816-831.	1.6	143
66	Constraining the Accretion Rate onto Sagittarius A* Using Linear Polarization. Astrophysical Journal, 2000, 545, 842-846.	1.6	142
67	How to model supernovae in simulations of star and galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1578-1603.	1.6	140
68	Neutral hydrogen in galaxy haloes at the peak of the cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2015, 449, 987-1003.	1.6	139
69	Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4447-4463.	1.6	139
70	The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1380-1399.	1.6	137
71	The Starburst Contribution to the Extragalactic γâ€Ray Background. Astrophysical Journal, 2007, 654, 219-225.	1.6	135
72	Dynamics of dusty radiation-pressure-driven shells and clouds: fast outflows from galaxies, star clusters, massive stars, and AGN. Monthly Notices of the Royal Astronomical Society, 2015, 449, 147-161.	1.6	132

#	Article	IF	CITATIONS
73	Proto–Neutron Star Winds with Magnetic Fields and Rotation. Astrophysical Journal, 2007, 659, 561-579.	1.6	131
74	Gas kinematics, morphology and angular momentum in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1930-1955.	1.6	131
75	The difficulty of getting high escape fractions of ionizing photons from high-redshift galaxies: a view from the FIRE cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 960-975.	1.6	126
76	The structure and dynamical evolution of the stellar disc of a simulated Milky Way-mass galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2430-2444.	1.6	125
77	The impact of star formation feedback on the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3810-3826.	1.6	123
78	When feedback fails: the scaling and saturation of star formation efficiency. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3511-3528.	1.6	120
79	Stellar feedback and bulge formation in clumpy discs. Monthly Notices of the Royal Astronomical Society, 2012, 427, 968-978.	1.6	119
80	Metal flows of the circumgalactic medium, and the metal budget in galactic haloes. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4170-4188.	1.6	119
81	Relativistic magnetohydrodynamics winds from rotating neutron stars. Monthly Notices of the Royal Astronomical Society, 2006, 368, 1717-1734.	1.6	118
82	A Dynamical Model for Hot Gas in the Galactic Center. Astrophysical Journal, 2004, 613, 322-325.	1.6	117
83	Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1848-1870.	1.6	117
84	Time-dependent models of accretion discs formed from compact object mergers. Monthly Notices of the Royal Astronomical Society, 2008, , .	1.6	115
85	Outflows from accretion discs formed in neutron star mergers: effect of black hole spin. Monthly Notices of the Royal Astronomical Society, 2015, 446, 750-758.	1.6	115
86	Binary stars can provide the â€~missing photons' needed for reionization. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3614-3619.	1.6	115
87	The nuclear stellar disc in Andromeda: a fossil from the era of black hole growth. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 405, L41-L45.	1.2	111
88	NONLINEAR TIDES IN CLOSE BINARY SYSTEMS. Astrophysical Journal, 2012, 751, 136.	1.6	111
89	Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2194-2211.	1.6	111
90	LOCAL RADIATION HYDRODYNAMIC SIMULATIONS OF MASSIVE STAR ENVELOPES AT THE IRON OPACITY PEAK. Astrophysical Journal, 2015, 813, 74.	1.6	108

#	Article	IF	CITATIONS
91	The formation and hierarchical assembly of globular cluster populations. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4528-4552.	1.6	107
92	But what about: cosmic rays, magnetic fields, conduction,Âand viscosity in galaxy formation. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3465-3498.	1.6	107
93	Simulating galaxies in the reionization era with FIRE-2: galaxy scaling relations, stellar mass functions, and luminosity functions. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1694-1715.	1.6	106
94	Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV Î ³ -ray emission. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3716-3744.	1.6	106
95	Relativistic jets and long-duration gamma-ray bursts from the birth of magnetars. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 383, L25-L29.	1.2	105
96	THERMAL INSTABILITY WITH ANISOTROPIC THERMAL CONDUCTION AND ADIABATIC COSMIC RAYS: IMPLICATIONS FOR COLD FILAMENTS IN GALAXY CLUSTERS. Astrophysical Journal, 2010, 720, 652-665.	1.6	105
97	Clustered supernovae drive powerful galactic winds after superbubble breakout. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3325-3347.	1.6	105
98	Tidal asteroseismology: Kepler's KOI-54. Monthly Notices of the Royal Astronomical Society, 2012, 421, 983-1006.	1.6	104
99	Galaxy-scale outflows driven by active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2221-2231.	1.6	102
100	The role of magnetic field geometry in the evolution of neutron star merger accretion discs. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4811-4825.	1.6	102
101	The disc-jet symbiosis emerges: modelling the emission of Sagittarius A* with electron thermodynamics. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3604-3619.	1.6	102
102	Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4221-4238.	1.6	99
103	Neutron-rich freeze-out in viscously spreading accretion discs formed from compact object mergers. Monthly Notices of the Royal Astronomical Society, 2009, 396, 304-314.	1.6	97
104	On the dust temperatures of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1397-1422.	1.6	97
105	A physical model of FeLoBALs: implications for quasar feedback. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1347-1354.	1.6	96
106	Observational signatures of galactic winds powered by active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3612-3622.	1.6	96
107	Where are the most ancient stars in the Milky Way?. Monthly Notices of the Royal Astronomical Society, 2018, 480, 652-668.	1.6	96
108	Magnetar-driven bubbles and the origin of collimated outflows in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2007, 380, 1541-1553.	1.6	93

#	Article	IF	CITATIONS
109	The origin of the diverse morphologies and kinematics of Milky Way-mass galaxies in the FIRE-2 simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4133-4157.	1.6	91
110	What FIREs up star formation: the emergence of the Kennicutt–Schmidt law from feedback. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3653-3673.	1.6	91
111	Supernova feedback in a local vertically stratified medium: interstellar turbulence and galactic winds. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2311-2326.	1.6	89
112	A stellar feedback origin for neutral hydrogen in high-redshift quasar-mass haloes. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L32-L36.	1.2	89
113	On the Conditions for Neutronâ€rich Gammaâ€Ray Burst Outflows. Astrophysical Journal, 2008, 676, 1130-1150.	1.6	88
114	A maximum stellar surface density in dense stellar systems. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 401, L19-L23.	1.2	88
115	Internal gravity wave excitation by turbulent convection. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2363-2376.	1.6	87
116	Dust attenuation, dust emission, and dust temperature in galaxies at z ≥ 5: a view from the FIRE-2 simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1844-1864.	1.6	87
117	Are Particles in Advectionâ€dominated Accretion Flows Thermal?. Astrophysical Journal, 1997, 490, 605-618.	1.6	86
118	Thermal runaway during the evolution of ONeMg cores towards accretion-induced collapse. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1910-1927.	1.6	84
119	The viscous evolution of white dwarf merger remnants. Monthly Notices of the Royal Astronomical Society, 2012, 427, 190-203.	1.6	82
120	Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra. Monthly Notices of the Royal Astronomical Society, 2018, 476, 528-553.	1.6	82
121	Large-scale poloidal magnetic field dynamo leads to powerful jets in GRMHD simulations of black hole accretion with toroidal field. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3656-3662.	1.6	82
122	ELECTRON HEAT CONDUCTION IN THE SOLAR WIND: TRANSITION FROM SPITZER-HÃ,,RM TO THE COLLISIONLESS LIMIT. Astrophysical Journal Letters, 2013, 769, L22.	3.0	81
123	Magnetorotational Turbulence and Dynamo in a Collisionless Plasma. Physical Review Letters, 2016, 117, 235101.	2.9	81
124	The evolution and fate of super-Chandrasekhar mass white dwarf merger remnants. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3461-3475.	1.6	81
125	The effects of <i>r</i> -process heating on fallback accretion in compact object mergers. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2771-2777.	1.6	78
126	The formation of massive, quiescent galaxies at cosmic noon. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 458, L14-L18.	1.2	78

#	Article	IF	CITATIONS
127	Synthetic Gaia Surveys from the FIRE Cosmological Simulations of Milky Way-mass Galaxies. Astrophysical Journal, Supplement Series, 2020, 246, 6.	3.0	77
128	PARTICLE-IN-CELL SIMULATIONS OF CONTINUOUSLY DRIVEN MIRROR AND ION CYCLOTRON INSTABILITIES IN HIGH BETA ASTROPHYSICAL AND HELIOSPHERIC PLASMAS. Astrophysical Journal, 2015, 800, 27.	1.6	76
129	Mass ejection in failed supernovae: variation with stellar progenitor. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2366-2383.	1.6	76
130	No missing photons for reionization: moderate ionizing photon escape fractions from the FIRE-2 simulations. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2001-2017.	1.6	75
131	Radiatively Inefficient Accretion Flow Models of Sgr A*. Astronomische Nachrichten, 2003, 324, 435-443.	0.6	69
132	Nickel-rich outflows from accretion discs formed by the accretion-induced collapse of white dwarfs. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1659-1664.	1.6	69
133	Entrainment in trouble: cool cloud acceleration and destruction in hot supernova-driven galactic winds. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4801-4814.	1.6	69
134	LOCAL TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF THE COLLISIONLESS MAGNETOROTATIONAL INSTABILITY. Astrophysical Journal, 2012, 755, 50.	1.6	67
135	Swift 1644+57: the longest gamma-ray burst?. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 419, L1-L5.	1.2	67
136	How supernovae launch galactic winds?. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 470, L39-L43.	1.2	67
137	Hybrid-kinetic Simulations of Ion Heating in Alfvénic Turbulence. Astrophysical Journal, 2019, 879, 53.	1.6	66
138	Black hole accretion discs and luminous transients in failed supernovae from non-rotating supergiants. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 485, L83-L88.	1.2	66
139	Virialization of the Inner CGM in the FIRE Simulations and Implications for Galaxy Disks, Star Formation, and Feedback. Astrophysical Journal, 2021, 911, 88.	1.6	66
140	Colours, star formation rates and environments of star-forming and quiescent galaxies at the cosmic noon. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1050-1072.	1.6	65
141	Low-redshift Lyman limit systems as diagnostics of cosmological inflows and outflows. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2292-2304.	1.6	65
142	Predicting the binary black hole population of the Milky Way with cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2704-2718.	1.6	64
143	Testing physical models for cosmic ray transport coefficients on galactic scales: self-confinement and extrinsic turbulence at â^¼GeV energies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4184-4213.	1.6	64
144	Two-temperature GRRMHD Simulations of M87. Astrophysical Journal, 2018, 864, 126.	1.6	63

#	Article	IF	CITATIONS
145	Nickel-rich outflows produced by the accretion-induced collapse of white dwarfs: light curves and spectra. Monthly Notices of the Royal Astronomical Society, 2010, 409, 846-854.	1.6	62
146	Outbursts of luminous blue variable stars from variations in the helium opacity. Nature, 2018, 561, 498-501.	13.7	62
147	BUOYANCY INSTABILITIES IN GALAXY CLUSTERS: CONVECTION DUE TO ADIABATIC COSMIC RAYS AND ANISOTROPIC THERMAL CONDUCTION. Astrophysical Journal, 2009, 699, 348-361.	1.6	61
148	Cooling flow solutions for the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2549-2572.	1.6	61
149	Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3544-3563.	1.6	60
150	Ab Initio Horizon-scale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds. Astrophysical Journal Letters, 2020, 896, L6.	3.0	59
151	Self-consistent proto-globular cluster formation in cosmological simulations of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4315-4332.	1.6	59
152	The observational signatures of convectively excited gravity modes in main-sequence stars. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1736-1745.	1.6	57
153	Not so fast: LB-1 is unlikely to contain a 70ÂM⊙ black hole. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L22-L27.	1.2	57
154	The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses. Astrophysical Journal, 2020, 905, 58.	1.6	57
155	On the structure of hot gas in haloes: implications for the <i>L</i> _X – <i>T</i> _X relation and missing baryons. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1219-1228.	1.6	56
156	The Radiative Efficiency and Spectra of Slowly Accreting Black Holes from Two-temperature GRRMHD Simulations. Astrophysical Journal Letters, 2017, 844, L24.	3.0	56
157	Characterizing mass, momentum, energy, and metal outflow rates of multiphase galactic winds in the FIRE-2 cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2979-3008.	1.6	56
158	A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L33.	3.0	55
159	Jet Dynamics in Compact Object Mergers: GW170817 Likely Had a Successful Jet. Astrophysical Journal, 2018, 866, 3.	1.6	55
160	COLLISIONLESS ISOTROPIZATION OF THE SOLAR-WIND PROTONS BY COMPRESSIVE FLUCTUATIONS AND PLASMA INSTABILITIES. Astrophysical Journal, 2016, 831, 128.	1.6	53
161	Cosmic ray driven outflows to Mpc scales from <i>L</i> * galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3640-3662.	1.6	52
162	ACCELERATION OF RELATIVISTIC ELECTRONS BY MAGNETOHYDRODYNAMIC TURBULENCE: IMPLICATIONS FOR NON-THERMAL EMISSION FROM BLACK HOLE ACCRETION DISKS. Astrophysical Journal, 2014, 791, 71.	1.6	51

#	Article	IF	CITATIONS
163	The effects of anisotropic viscosity on turbulence and heat transport in the intracluster medium. Monthly Notices of the Royal Astronomical Society, 2012, 422, 704-718.	1.6	50
164	STOCHASTIC HEATING, DIFFERENTIAL FLOW, AND THE ALPHA-TO-PROTON TEMPERATURE RATIO IN THE SOLAR WIND. Astrophysical Journal, 2013, 776, 45.	1.6	50
165	Evolution of supernovae-driven superbubbles with conduction and cooling. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1961-1990.	1.6	49
166	Cosmological Simulations of Quasar Fueling to Subparsec Scales Using Lagrangian Hyper-refinement. Astrophysical Journal, 2021, 917, 53.	1.6	49
167	No assembly required: mergers are mostly irrelevant for the growth of low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 319-331.	1.6	48
168	Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes. Monthly Notices of the Royal Astronomical Society, 2018, 477, 219-229.	1.6	48
169	Direct Detection of Black Hole-driven Turbulence in the Centers of Galaxy Clusters. Astrophysical Journal Letters, 2020, 889, L1.	3.0	48
170	A model for the formation of stellar associations and clusters from giant molecular clouds. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3239-3258.	1.6	48
171	The impact of stellar feedback on hot gas in galaxy haloes: the Sunyaev–Zel'dovich effect and soft X-ray emission. Monthly Notices of the Royal Astronomical Society, 2016, 463, 4533-4544.	1.6	47
172	A NARROW SHORT-DURATION GRB JET FROM A WIDE CENTRAL ENGINE. Astrophysical Journal, 2015, 813, 64.	1.6	45
173	The surprisingly small impact of magnetic fields on the inner accretion flow of Sagittarius A* fueled by stellar winds. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3272-3293.	1.6	44
174	The Cooling Flow to Accretion Flow Transition. Astrophysical Journal, 2000, 528, 236-242.	1.6	44
175	PIC SIMULATIONS OF THE EFFECT OF VELOCITY SPACE INSTABILITIES ON ELECTRON VISCOSITY AND THERMAL CONDUCTION. Astrophysical Journal, 2016, 824, 123.	1.6	42
176	An instability of feedback-regulated star formation in galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2301-2314.	1.6	42
177	The maximum accretion rate of hot gas in dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6042-6058.	1.6	42
178	When the Jeans Do Not Fit: How Stellar Feedback Drives Stellar Kinematics and Complicates Dynamical Modeling in Low-mass Galaxies. Astrophysical Journal, 2017, 835, 193.	1.6	41
179	Simulations of jet heating in galaxy clusters: successes and challenges. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2465-2486.	1.6	41
180	Effects of different cosmic ray transport models on galaxy formation. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3663-3669.	1.6	41

#	Article	IF	CITATIONS
181	High-frequency heating of the solar wind triggered by low-frequency turbulence. Nature Astronomy, 2022, 6, 715-723.	4.2	41
182	Numerical simulations of internal wave generation by convection in water. Physical Review E, 2015, 91, 063016.	0.8	40
183	A stripped-companion origin for Be stars: clues from the putative black holes HR 6819 and LB-1. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3436-3455.	1.6	40
184	TURBULENT CHEMICAL DIFFUSION IN CONVECTIVELY BOUNDED CARBON FLAMES. Astrophysical Journal, 2016, 832, 71.	1.6	39
185	Low-frequency Variability in Massive Stars: Core Generation or Surface Phenomenon?. Astrophysical Journal Letters, 2019, 886, L15.	3.0	39
186	A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO THE LIGO GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 826, L29.	3.0	38
187	How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes?. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2240-2252.	1.6	38
188	Tidal resonance locks in inspiraling white dwarf binaries. Monthly Notices of the Royal Astronomical Society, 2013, 433, 332-352.	1.6	37
189	Submillimetre flux as a probe of molecular ISM mass in high- <i>z</i> galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 478, L83-L88.	1.2	37
190	Gas kinematics in FIRE simulated galaxies compared to spatially unresolved H i observations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1536-1548.	1.6	37
191	Fast winds drive slow shells: a model for the circumgalactic medium as galactic wind-driven bubbles. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1873-1896.	1.6	36
192	Pressure balance in the multiphase ISM of cosmologically simulated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3664-3683.	1.6	35
193	RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE. Astrophysical Journal, 2012, 758, 78.	1.6	34
194	Multiphase gas in the circumgalactic medium: relative role of tcool/tff and density fluctuations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3195-3210.	1.6	34
195	Accretion-induced Collapse from Helium Star + White Dwarf Binaries. Astrophysical Journal, 2017, 843, 151.	1.6	32
196	The Progenitors of Calcium-strong Transients. Astrophysical Journal, 2019, 887, 180.	1.6	32
197	The bursty origin of the Milky Way thick disc. Monthly Notices of the Royal Astronomical Society, 2021, 505, 889-902.	1.6	32
198	Hot-mode accretion and the physics of thin-discÂgalaxyÂformation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5056-5073.	1.6	32

#	Article	IF	CITATIONS
199	Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>β</mml:mi> Plasma. Physical Review Letters, 2017, 119, 155101.</mml:math 	2.9	31
200	Galaxies lacking dark matter produced by close encounters in a cosmological simulation. Nature Astronomy, 2022, 6, 496-502.	4.2	31
201	PERPENDICULAR ION HEATING BY REDUCED MAGNETOHYDRODYNAMIC TURBULENCE. Astrophysical Journal, 2013, 776, 90.	1.6	30
202	The impact of AGN wind feedback in simulations of isolated galaxies with a multiphase ISM. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5292-5308.	1.6	30
203	Gas infall and radial transport in cosmological simulations of milky way-mass discs. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4149-4170.	1.6	30
204	Convection Destroys the Core/Mantle Structure in Hybrid C/O/Ne White Dwarfs. Astrophysical Journal Letters, 2017, 834, L9.	3.0	29
205	A Resolution Study of Magnetically Arrested Disks. Astrophysical Journal, 2019, 874, 168.	1.6	29
206	Thermal instability of halo gas heated by streaming cosmic rays. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1801-1817.	1.6	29
207	The physics of galactic winds driven by cosmic rays I: Diffusion. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1184-1203.	1.6	28
208	The physics of galactic winds driven by cosmic rays – II. Isothermal streaming solutions. Monthly Notices of the Royal Astronomical Society, 2021, 510, 920-945.	1.6	28
209	Numerical simulations of the random angular momentum in convection: Implications for supergiant collapse to form black holes. Monthly Notices of the Royal Astronomical Society, 2022, 511, 176-197.	1.6	28
210	Reconciling cosmic ray transport theory with phenomenological models motivated by Milky-Way data. Monthly Notices of the Royal Astronomical Society, 2022, 514, 657-674.	1.6	28
211	A physical model of mass ejection in failed supernovae. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1225-1238.	1.6	27
212	The statistical challenge of constraining the low-mass IMF in Local Group dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 319-332.	1.6	26
213	On the comparison of AGN with GRMHD simulations: I. Sgr A*. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1404-1418.	1.6	26
214	The Structure of Radiatively Inefficient Black Hole Accretion Flows. Astrophysical Journal, 2020, 891, 63.	1.6	26
215	Testing the Recovery of Intrinsic Galaxy Sizes and Masses of zÂâ^1⁄4Â2 Massive Galaxies Using Cosmological Simulations. Astrophysical Journal Letters, 2017, 844, L6.	3.0	25
216	Tilted Disks around Black Holes: A Numerical Parameter Survey for Spin and Inclination Angle. Astrophysical Journal, 2019, 878, 51.	1.6	25

#	Article	IF	CITATIONS
217	Inhomogeneous accretion discs and the soft states of black hole X-ray binaries. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 426, L71-L75.	1.2	24
218	Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L111-L115.	1.2	23
219	Weak Shock Propagation with Accretion. I. Self-similar Solutions and Application to Failed Supernovae. Astrophysical Journal, 2018, 863, 158.	1.6	23
220	Virial shocks are suppressed in cosmic ray-dominated galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2021, 505, 259-273.	1.6	23
221	Radio emission from supernova remnants: implications for post-shock magnetic field amplification & the magnetic fields of galaxies. Monthly Notices of the Royal Astronomical Society, 2009, 397, 1410-1419.	1.6	22
222	Black widow evolution: magnetic braking by an ablated wind. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3656-3665.	1.6	22
223	First predicted cosmic ray spectra, primary-to-secondary ratios, and ionization rates from MHD galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3470-3514.	1.6	22
224	The impact of non-thermal electrons on event horizon scale images and spectra of Sgr A*. Monthly Notices of the Royal Astronomical Society, 0, , stw3324.	1.6	21
225	The impact of astrophysical dust grains on the confinement of cosmic rays. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2630-2644.	1.6	21
226	Exploring the epoch of hydrogen reionization using FRBs. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5134-5146.	1.6	21
227	Magnetically modified spherical accretion in GRMHD: reconnection-driven convection and jet propagation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 6076-6095.	1.6	21
228	A predicted correlation between age gradient and star formation history in FIRE dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1186-1201.	1.6	20
229	Magneto-immutable turbulence in weakly collisional plasmas. Journal of Plasma Physics, 2019, 85, .	0.7	20
230	The Effects of Tilt on the Images of Black Hole Accretion Flows. Astrophysical Journal, 2020, 894, 14.	1.6	20
231	The effect of jet–ejecta interaction on the viewing angle dependence of kilonova light curves. Monthly Notices of the Royal Astronomical Society, 2021, 502, 865-875.	1.6	20
232	The Impact of Type Ia Supernovae in Quiescent Galaxies. II. Energetics and Turbulence. Astrophysical Journal, 2020, 898, 23.	1.6	20
233	Amplitude limits and nonlinear damping of shear-Alfvén waves in high-beta low-collisionality plasmas. New Journal of Physics, 2017, 19, 055005.	1.2	19
234	Super-Eddington stellar winds: unifying radiative-enthalpy versus flux-driven models. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3749-3760.	1.6	19

#	Article	IF	CITATIONS
235	Thermal instability in the CGM of <i>L</i> ⋆ galaxies: testing â€~precipitation' models with the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1841-1862.	1.6	19
236	A diagnostic for localizing red giant differential rotation. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464, L16-L20.	1.2	18
237	LAMOST J0140355Â+Â392651: an evolved cataclysmic variable donor transitioning to become an extremely low-mass white dwarf. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2051-2073.	1.6	18
238	Thermal Electrons in Mildly Relativistic Synchrotron Blast Waves. Astrophysical Journal Letters, 2021, 923, L14.	3.0	18
239	Neutral CGM as damped Ly α absorbers at high redshift. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2869-2884.	1.6	17
240	Black widow formation by pulsar irradiation and sustained magnetic braking. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1592-1603.	1.6	17
241	Shearing-box simulations of MRI-driven turbulence in weakly collisional accretion discs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4013-4029.	1.6	16
242	Strongly time-variable ultraviolet metal-line emission from the circum-galactic medium of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 463, 120-133.	1.6	15
243	The Effects of Magnetic Fields on the Dynamics of Radiation Pressure–dominated Massive Star Envelopes. Astrophysical Journal, 2017, 843, 68.	1.6	15
244	Gravitational interactions of stars with supermassive black hole binaries – I. Tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4009-4034.	1.6	15
245	PIC Simulations of Velocity-space Instabilities in a Decreasing Magnetic Field: Viscosity and Thermal Conduction. Astrophysical Journal, 2018, 854, 132.	1.6	15
246	Self-sustaining sound in collisionless, high- <i>β</i> plasma. Journal of Plasma Physics, 2020, 86, .	0.7	15
247	Pressure-anisotropy-induced nonlinearities in the kinetic magnetorotational instability. Journal of Plasma Physics, 2017, 83, .	0.7	14
248	The Fate of Asymptotic Giant Branch Winds in Massive Galaxies and the Intracluster Medium. Astrophysical Journal, 2019, 887, 41.	1.6	14
249	Adaptive Critical Balance and Firehose Instability in an Expanding, Turbulent, Collisionless Plasma. Astrophysical Journal Letters, 2021, 922, L35.	3.0	14
250	Fast and Luminous Transients from the Explosions of Long-lived Massive White Dwarf Merger Remnants. Astrophysical Journal, 2017, 850, 127.	1.6	13
251	The Impact of Type Ia Supernovae in Quiescent Galaxies. I. Formation of the Multiphase Interstellar Medium. Astrophysical Journal, 2020, 894, 44.	1.6	13
252	Sound-wave instabilities in dilute plasmas with cosmic rays: implications for cosmic ray confinement and the Perseus X-ray ripples. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5323-5335.	1.6	13

#	Article	IF	CITATIONS
253	Stellar Binaries Incident on Supermassive Black Hole Binaries: Implications for Double Tidal Disruption Events, Calcium-rich Transients, and Hypervelocity Stars. Astrophysical Journal Letters, 2018, 863, L24.	3.0	12
254	The maximum stellar surface density due to the failure of stellar feedback. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5548-5553.	1.6	12
255	Weak Shock Propagation with Accretion. II. Stability of Self-similar Solutions to Radial Perturbations. Astrophysical Journal, 2019, 874, 58.	1.6	12
256	Gravitational interactions of stars with supermassive black hole binaries – II. Hypervelocity stars. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2132-2148.	1.6	12
257	Optical to X-Ray Signatures of Dense Circumstellar Interaction in Core-collapse Supernovae. Astrophysical Journal, 2022, 928, 122.	1.6	12
258	Accretion of magnetized stellar winds in the Galactic centre: implications for Sgr A* and PSR J1745â^'2900. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 482, L123-L128.	1.2	11
259	The impact of <i>r</i> -process heating on the dynamics of neutron star merger accretion disc winds and their electromagnetic radiation. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2968-2979.	1.6	11
260	An Empirical Study of Contamination in Deep, Rapid, and Wide-field Optical Follow-up of Gravitational Wave Events. Astrophysical Journal, 2018, 858, 18.	1.6	10
261	The stability of massive main-sequence stars as a function of metallicity. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3397-3404.	1.6	9
262	On the deuterium abundance and the importance of stellar mass loss in the interstellar and intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2018, 477, 80-92.	1.6	9
263	Suppressed heat conductivity in the intracluster medium: implications for the magneto-thermal instability. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3435-3454.	1.6	9
264	The contribution of globular clusters to cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4062-4071.	1.6	9
265	The In Situ Origins of Dwarf Stellar Outskirts in FIRE-2. Astrophysical Journal, 2022, 931, 152.	1.6	9
266	Stochastic Electron Acceleration by the Whistler Instability in a Growing Magnetic Field. Astrophysical Journal, 2017, 850, 113.	1.6	8
267	Surface manifestation of stochastically excited internal gravity waves. Monthly Notices of the Royal Astronomical Society, 2021, 508, 132-143.	1.6	8
268	Inefficient angular momentum transport in accretion disc boundary layers: angular momentum belt in the boundary layer. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1528-1541.	1.6	7
269	Weak Shock Propagation with Accretion. III. A Numerical Study on Shock Propagation and Stability. Astrophysical Journal, 2019, 878, 150.	1.6	7
270	Dissipation-scale turbulence in the solar wind. AIP Conference Proceedings, 2007, , .	0.3	3

#	Article	IF	CITATIONS
271	The Effects of Tilt on the Time Variability of Millimeter and Infrared Emission from Sagittarius A*. Astrophysical Journal, 2022, 926, 136.	1.6	3
272	Optical Flares from the Tidal Disruption of Stars by Massive Black Holes. Proceedings of the International Astronomical Union, 2009, 5, 337-337.	0.0	2
273	Are Gamma-Ray Burst Outflows Neutron-Rich?. AIP Conference Proceedings, 2008, , .	0.3	1
274	Constraints on Elliptical Galaxy Formation from Dry Mergers. Proceedings of the International Astronomical Union, 2006, 2, 195-195.	0.0	0
275	Zeeman splitting in OH megamasers. Proceedings of the International Astronomical Union, 2007, 3, 467-470.	0.0	0
276	Magnetar Driven Bubbles and the Origin of Collimated Outflows from GRBs. AIP Conference Proceedings, 2008, , .	0.3	0
277	Wave-Driven Mass Loss: A mechanism for late-stage stellar eruptions. Proceedings of the International Astronomical Union, 2011, 7, 391-392.	0.0	0