
Jannis Wenk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2003617/publications.pdf Version: 2024-02-01

IANNUS WENK

#	Article	IF	CITATIONS
1	High performance in-situ tuned self-doped polyaniline (PANI) membranes for organic solvent (nano)filtration. Polymer, 2022, 245, 124682.	3.8	7
2	Huddling together to survive: Population density as a survival strategy of non-spore forming bacteria under nutrient starvation and desiccation at solid-air interfaces. Microbiological Research, 2022, 258, 126997.	5.3	2
3	Effects of g-C ₃ N ₄ Heterogenization into Intrinsically Microporous Polymers on the Photocatalytic Generation of Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2022, 14, 19938-19948.	8.0	17
4	Synthesis of photocatalytic pore size-tuned ZnO molecular foams. Journal of Materials Chemistry A, 2022, 10, 11542-11552.	10.3	7
5	Organic matter removal and antifouling performance of sulfonated polyaniline nanofiltration (S-PANI NF) membranes. Journal of Environmental Chemical Engineering, 2022, 10, 107906.	6.7	8
6	Decolorization and control of bromate formation in membrane ozonation of humic-rich groundwater. Water Research, 2022, 221, 118739.	11.3	12
7	Nanoporous WO3 grown on a 3D tungsten mesh by electrochemical anodization for enhanced photoelectrocatalytic degradation of tetracycline in a continuous flow reactor. Journal of Electroanalytical Chemistry, 2022, 920, 116617.	3.8	3
8	Microbubble-microplastic interactions in batch air flotation. Chemical Engineering Journal, 2022, 449, 137866.	12.7	14
9	Computational fluid dynamics simulation of two-phase flow and dissolved oxygen in a wastewater treatment oxidation ditch. Chemical Engineering Research and Design, 2021, 145, 340-353.	5.6	21
10	Photocatalytic ZnO Foams for Micropollutant Degradation. Advanced Sustainable Systems, 2021, 5, 2000208.	5.3	22
11	Selfâ€doped sulfonated polyaniline ultrafiltration membranes with enhanced chlorine resistance and antifouling properties. Journal of Applied Polymer Science, 2021, 138, 50756.	2.6	9
12	Innovative aspects of environmental chemistry and technology regarding air, water, and soil pollution. Environmental Science and Pollution Research, 2021, 28, 58958-58968.	5.3	3
13	Aqueous ozonation of furans: Kinetics and transformation mechanisms leading to the formation of α,β-unsaturated dicarbonyl compounds. Water Research, 2021, 203, 117487.	11.3	13
14	Simplified in-situ tailoring of cross-linked self-doped sulfonated polyaniline (S-PANI) membranes for nanofiltration applications. Journal of Membrane Science, 2021, 637, 119654.	8.2	12
15	Azulene-based fluorescent chemosensor for adenosine diphosphate. Chemical Communications, 2021, 57, 10608-10611.	4.1	10
16	Bacteriophages in Biological Wastewater Treatment Systems: Occurrence, Characterization, and Function. Frontiers in Microbiology, 2021, 12, 730071.	3.5	16
17	Effect of Solution pH on the Dual Role of Dissolved Organic Matter in Sensitized Pollutant Photooxidation. Environmental Science & Technology, 2021, 55, 15110-15122.	10.0	22
18	A simple, azulene-based colorimetric probe for the detection of nitrite in water. Frontiers of Chemical Science and Engineering, 2020, 14, 90-96.	4.4	21

JANNIS WENK

#	Article	IF	CITATIONS
19	Rapid and on-site simultaneous electrochemical detection of copper, lead and mercury in the Amazon river. Sensors and Actuators B: Chemical, 2020, 307, 127620.	7.8	75
20	Azulenesulfonium and azulenebis(sulfonium) salts: Formation by interrupted Pummerer reaction and subsequent derivatisation by nucleophiles. Tetrahedron, 2020, 76, 131700.	1.9	5
21	Colorimetric detection of Hg ²⁺ with an azulene-containing chemodosimeter <i>via</i> dithioacetal hydrolysis. Analyst, The, 2020, 145, 6262-6269.	3.5	21
22	Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands – A review. Ecological Engineering, 2020, 148, 105783.	3.6	65
23	Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices. Environmental Science: Water Research and Technology, 2020, 6, 2465-2478.	2.4	19
24	Photocatalytic immobilised TiO2 nanostructures via fluoride-free anodisation. Journal of Environmental Chemical Engineering, 2020, 8, 103798.	6.7	5
25	A Colorimetric Chemosensor Based on a Nozoe Azulene That Detects Fluoride in Aqueous/Alcoholic Media. Frontiers in Chemistry, 2020, 8, 10.	3.6	28
26	Continuous Production of Metal Oxide Nanoparticles via Membrane Emulsification–Precipitation. Industrial & Engineering Chemistry Research, 2020, 59, 9085-9094.	3.7	9
27	In situ characterisation of size distribution and rise velocity of microbubbles by high-speed photography. Chemical Engineering Science, 2020, 225, 115836.	3.8	36
28	Azulenes with aryl substituents bearing pentafluorosulfanyl groups: synthesis, spectroscopic and halochromic properties. New Journal of Chemistry, 2019, 43, 992-1000.	2.8	15
29	COMBI, continuous ozonation merged with biofiltration to study oxidative and microbial transformation of trace organic contaminants. Environmental Science: Water Research and Technology, 2019, 5, 552-563.	2.4	9
30	Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts. Journal of Hazardous Materials, 2019, 378, 120799.	12.4	81
31	Natural Photosensitizers in Constructed Unit Process Wetlands: Photochemical Characterization and Inactivation of Pathogen Indicator Organisms. Environmental Science & Technology, 2019, 53, 7724-7735.	10.0	29
32	Azulene-Derived Fluorescent Probe for Bioimaging: Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy. Journal of the American Chemical Society, 2019, 141, 19389-19396.	13.7	125
33	Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H ₂ O ₂ Production and UV Photolysis. Environmental Science & Technology, 2018, 52, 195-204.	10.0	22
34	A Single Tube Contactor for Testing Membrane Ozonation. Water (Switzerland), 2018, 10, 1416.	2.7	16
35	Azulene–boronate esters: colorimetric indicators for fluoride in drinking water. Chemical Communications, 2017, 53, 12580-12583.	4.1	65
36	Modelling of Ozone Mass-Transfer through Non-Porous Membranes for Water Treatment. Water (Switzerland), 2017, 9, 452.	2.7	23

JANNIS WENK

#	Article	IF	CITATIONS
37	Photoinactivation of Eight Health-Relevant Bacterial Species: Determining the Importance of the Exogenous Indirect Mechanism. Environmental Science & amp; Technology, 2016, 50, 5050-5059.	10.0	44
38	Co-occurrence of Photochemical and Microbiological Transformation Processes in Open-Water Unit Process Wetlands. Environmental Science & Technology, 2015, 49, 14136-14145.	10.0	62
39	Sunlight Inactivation of Viruses in Open-Water Unit Process Treatment Wetlands: Modeling Endogenous and Exogenous Inactivation Rates. Environmental Science & Technology, 2015, 49, 2757-2766.	10.0	53
40	Photosensitizing and Inhibitory Effects of Ozonated Dissolved Organic Matter on Triplet-Induced Contaminant Transformation. Environmental Science & amp; Technology, 2015, 49, 8541-8549.	10.0	80
41	Photooxidation-Induced Changes in Optical, Electrochemical, and Photochemical Properties of Humic Substances. Environmental Science & amp; Technology, 2014, 48, 2688-2696.	10.0	211
42	Quenching of Excited Triplet States by Dissolved Natural Organic Matter. Environmental Science & Technology, 2013, 47, 12802-12810.	10.0	132
43	Chemical Oxidation of Dissolved Organic Matter by Chlorine Dioxide, Chlorine, And Ozone: Effects on Its Optical and Antioxidant Properties. Environmental Science & Technology, 2013, 47, 11147-11156.	10.0	244
44	Phenolic Antioxidants Inhibit the Triplet-Induced Transformation of Anilines and Sulfonamide Antibiotics in Aqueous Solution. Environmental Science & Technology, 2012, 46, 5455-5462.	10.0	174
45	Reply to Comment on "Effect of Dissolved Organic Matter on the Transformation of Contaminants Induced by Excited Triplet States and the Hydroxyl Radical― Environmental Science & Technology, 2011, 45, 7947-7948.	10.0	4
46	Effect of Dissolved Organic Matter on the Transformation of Contaminants Induced by Excited Triplet States and the Hydroxyl Radical. Environmental Science & Technology, 2011, 45, 1334-1340.	10.0	388