Jannis Wenk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2003617/publications.pdf

Version: 2024-02-01

331670 223800 2,259 46 21 46 h-index citations g-index papers 48 48 48 2354 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Effect of Dissolved Organic Matter on the Transformation of Contaminants Induced by Excited Triplet States and the Hydroxyl Radical. Environmental Science & Exchnology, 2011, 45, 1334-1340.	10.0	388
2	Chemical Oxidation of Dissolved Organic Matter by Chlorine Dioxide, Chlorine, And Ozone: Effects on Its Optical and Antioxidant Properties. Environmental Science & Environmental Science & 2013, 47, 11147-11156.	10.0	244
3	Photooxidation-Induced Changes in Optical, Electrochemical, and Photochemical Properties of Humic Substances. Environmental Science & Environmental Sc	10.0	211
4	Phenolic Antioxidants Inhibit the Triplet-Induced Transformation of Anilines and Sulfonamide Antibiotics in Aqueous Solution. Environmental Science &	10.0	174
5	Quenching of Excited Triplet States by Dissolved Natural Organic Matter. Environmental Science & Envir	10.0	132
6	Azulene-Derived Fluorescent Probe for Bioimaging: Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy. Journal of the American Chemical Society, 2019, 141, 19389-19396.	13.7	125
7	Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts. Journal of Hazardous Materials, 2019, 378, 120799.	12.4	81
8	Photosensitizing and Inhibitory Effects of Ozonated Dissolved Organic Matter on Triplet-Induced Contaminant Transformation. Environmental Science & En	10.0	80
9	Rapid and on-site simultaneous electrochemical detection of copper, lead and mercury in the Amazon river. Sensors and Actuators B: Chemical, 2020, 307, 127620.	7.8	75
10	Azulene–boronate esters: colorimetric indicators for fluoride in drinking water. Chemical Communications, 2017, 53, 12580-12583.	4.1	65
11	Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands – A review. Ecological Engineering, 2020, 148, 105783.	3.6	65
12	Co-occurrence of Photochemical and Microbiological Transformation Processes in Open-Water Unit Process Wetlands. Environmental Science & Environmental	10.0	62
13	Sunlight Inactivation of Viruses in Open-Water Unit Process Treatment Wetlands: Modeling Endogenous and Exogenous Inactivation Rates. Environmental Science & Environmental Science & 2757-2766.	10.0	53
14	Photoinactivation of Eight Health-Relevant Bacterial Species: Determining the Importance of the Exogenous Indirect Mechanism. Environmental Science & Technology, 2016, 50, 5050-5059.	10.0	44
15	In situ characterisation of size distribution and rise velocity of microbubbles by high-speed photography. Chemical Engineering Science, 2020, 225, 115836.	3.8	36
16	Natural Photosensitizers in Constructed Unit Process Wetlands: Photochemical Characterization and Inactivation of Pathogen Indicator Organisms. Environmental Science & Environmental Science & Pathogen Indicator Organisms. Environmental Science & Pathogen Indicator	10.0	29
17	A Colorimetric Chemosensor Based on a Nozoe Azulene That Detects Fluoride in Aqueous/Alcoholic Media. Frontiers in Chemistry, 2020, 8, 10.	3.6	28
18	Modelling of Ozone Mass-Transfer through Non-Porous Membranes for Water Treatment. Water (Switzerland), 2017, 9, 452.	2.7	23

#	Article	IF	Citations
19	Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H ₂ O ₂ Production and UV Photolysis. Environmental Science & Environment	10.0	22
20	Photocatalytic ZnO Foams for Micropollutant Degradation. Advanced Sustainable Systems, 2021, 5, 2000208.	5.3	22
21	Effect of Solution pH on the Dual Role of Dissolved Organic Matter in Sensitized Pollutant Photooxidation. Environmental Science & Environmental Scien	10.0	22
22	A simple, azulene-based colorimetric probe for the detection of nitrite in water. Frontiers of Chemical Science and Engineering, 2020, 14, 90-96.	4.4	21
23	Colorimetric detection of Hg ²⁺ with an azulene-containing chemodosimeter <i>via</i> dithioacetal hydrolysis. Analyst, The, 2020, 145, 6262-6269.	3.5	21
24	Computational fluid dynamics simulation of two-phase flow and dissolved oxygen in a wastewater treatment oxidation ditch. Chemical Engineering Research and Design, 2021, 145, 340-353.	5.6	21
25	Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices. Environmental Science: Water Research and Technology, 2020, 6, 2465-2478.	2.4	19
26	Effects of g-C ₃ N ₄ Heterogenization into Intrinsically Microporous Polymers on the Photocatalytic Generation of Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2022, 14, 19938-19948.	8.0	17
27	A Single Tube Contactor for Testing Membrane Ozonation. Water (Switzerland), 2018, 10, 1416.	2.7	16
28	Bacteriophages in Biological Wastewater Treatment Systems: Occurrence, Characterization, and Function. Frontiers in Microbiology, 2021, 12, 730071.	3.5	16
29	Azulenes with aryl substituents bearing pentafluorosulfanyl groups: synthesis, spectroscopic and halochromic properties. New Journal of Chemistry, 2019, 43, 992-1000.	2.8	15
30	Microbubble-microplastic interactions in batch air flotation. Chemical Engineering Journal, 2022, 449, 137866.	12.7	14
31	Aqueous ozonation of furans: Kinetics and transformation mechanisms leading to the formation of $\hat{l}_{\pm},\hat{l}^{2}$ -unsaturated dicarbonyl compounds. Water Research, 2021, 203, 117487.	11.3	13
32	Simplified in-situ tailoring of cross-linked self-doped sulfonated polyaniline (S-PANI) membranes for nanofiltration applications. Journal of Membrane Science, 2021, 637, 119654.	8.2	12
33	Decolorization and control of bromate formation in membrane ozonation of humic-rich groundwater. Water Research, 2022, 221, 118739.	11.3	12
34	Azulene-based fluorescent chemosensor for adenosine diphosphate. Chemical Communications, 2021, 57, 10608-10611.	4.1	10
35	COMBI, continuous ozonation merged with biofiltration to study oxidative and microbial transformation of trace organic contaminants. Environmental Science: Water Research and Technology, 2019, 5, 552-563.	2.4	9
36	Continuous Production of Metal Oxide Nanoparticles via Membrane Emulsification–Precipitation. Industrial & Company Engineering Chemistry Research, 2020, 59, 9085-9094.	3.7	9

#	Article	IF	CITATIONS
37	Selfâ€doped sulfonated polyaniline ultrafiltration membranes with enhanced chlorine resistance and antifouling properties. Journal of Applied Polymer Science, 2021, 138, 50756.	2.6	9
38	Organic matter removal and antifouling performance of sulfonated polyaniline nanofiltration (S-PANI NF) membranes. Journal of Environmental Chemical Engineering, 2022, 10, 107906.	6.7	8
39	High performance in-situ tuned self-doped polyaniline (PANI) membranes for organic solvent (nano)filtration. Polymer, 2022, 245, 124682.	3.8	7
40	Synthesis of photocatalytic pore size-tuned ZnO molecular foams. Journal of Materials Chemistry A, 2022, 10, 11542-11552.	10.3	7
41	Azulenesulfonium and azulenebis(sulfonium) salts: Formation by interrupted Pummerer reaction and subsequent derivatisation by nucleophiles. Tetrahedron, 2020, 76, 131700.	1.9	5
42	Photocatalytic immobilised TiO2 nanostructures via fluoride-free anodisation. Journal of Environmental Chemical Engineering, 2020, 8, 103798.	6.7	5
43	Reply to Comment on "Effect of Dissolved Organic Matter on the Transformation of Contaminants Induced by Excited Triplet States and the Hydroxyl Radical― Environmental Science & Technology, 2011, 45, 7947-7948.	10.0	4
44	Innovative aspects of environmental chemistry and technology regarding air, water, and soil pollution. Environmental Science and Pollution Research, 2021, 28, 58958-58968.	5.3	3
45	Nanoporous WO3 grown on a 3D tungsten mesh by electrochemical anodization for enhanced photoelectrocatalytic degradation of tetracycline in a continuous flow reactor. Journal of Electroanalytical Chemistry, 2022, 920, 116617.	3.8	3
46	Huddling together to survive: Population density as a survival strategy of non-spore forming bacteria under nutrient starvation and desiccation at solid-air interfaces. Microbiological Research, 2022, 258, 126997.	5.3	2