Mitchell B Cruzan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/200325/publications.pdf

Version: 2024-02-01

62 papers

2,914 citations

147801 31 h-index 53 g-index

63 all docs

63 docs citations

63 times ranked

2796 citing authors

#	Article	IF	CITATIONS
1	Fitness effects of somatic mutations accumulating during vegetative growth. Evolutionary Ecology, 2022, 36, 767-785.	1.2	6
2	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	3.9	19
3	The role of functional diversity and facilitation in smallâ€scale pollinator habitat. Ecological Applications, 2021, 31, e02355.	3.8	5
4	Weak coupling among barrier loci and waves of neutral and adaptive introgression across an expanding hybrid zone. Evolution; International Journal of Organic Evolution, 2021, 75, 3098-3114.	2.3	10
5	Landscape Genetics of Plants: Challenges and Opportunities. Plant Communications, 2020, 1, 100100.	7.7	30
6	Fineâ€scale habitat heterogeneity and vole runways influence seed dispersal in Plagiobothrys nothofulvus. American Journal of Botany, 2020, 107, 413-422.	1.7	7
7	How to Make a Weed: The Saga of the Slender False Brome Invasion in the North American West and Lessons for the Future. BioScience, 2019, 69, 496-507.	4.9	4
8	Trait divergence, not plasticity, determines the success of a newly invasive plant. Annals of Botany, 2019, 123, 667-679.	2.9	13
9	Density-Dependent Pollination and Germination in the Patchy Vernal Pool Species <i>Lasthenia californica</i> . International Journal of Plant Sciences, 2018, 179, 583-591.	1.3	6
10	Evidence for human-mediated range expansion and gene flow in an invasive grass. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181125.	2.6	20
11	Selective differentiation during the colonization and establishment of a newly invasive species. Journal of Evolutionary Biology, 2018, 31, 1689-1703.	1.7	11
12	Is biomass a reliable estimate of plant fitness?. Applications in Plant Sciences, 2017, 5, 1600094.	2.1	164
13	An Efficient Pipeline to Generate Data for Studies in Plastid Population Genomics and Phylogeography. Applications in Plant Sciences, 2017, 5, 1700053.	2.1	6
14	Small unmanned aerial vehicles (microâ€UAVs, drones) in plant ecology. Applications in Plant Sciences, 2016, 4, 1600041.	2.1	131
15	Common mycelial networks impact competition in an invasive grass. American Journal of Botany, 2016, 103, 1041-1049.	1.7	12
16	Postpollination discrimination between self and outcross pollen covaries with the mating system of a selfâ€compatible flowering plant. American Journal of Botany, 2016, 103, 568-576.	1.7	24
17	Rapid purging of genetic load in a metapopulation and consequences for range expansion in an invasive plant. Biological Invasions, 2016, 18, 183-196.	2.4	29

Propagule Pressure and Disturbance Drive the Invasion of Perennial False-Brome (<i>Brachypodium) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	Citations
19	Barriers to invasive infilling by Brachypodium sylvaticum in Pacific Northwest forests. Biological Invasions, 2015, 17, 2247-2260.	2.4	9
20	Variation in Sex Allocation and Floral Morphology in an Expanding Distylous Plant Hybrid Complex. International Journal of Plant Sciences, 2014, 175, 518-525.	1.3	1
21	Consequences of Mycorrhizal Colonization forPiriquetaMorphotypes under Drought Stress. International Journal of Plant Sciences, 2013, 174, 65-73.	1.3	5
22	Sequencing and de novo transcriptome assembly of <i>Brachypodium sylvaticum</i> (Poaceae). Applications in Plant Sciences, 2013, 1, 1200011.	2.1	31
23	Shifting dispersal modes at an expanding species' range margin. Molecular Ecology, 2010, 19, 1134-1146.	3.9	47
24	Intraspecific variation in gene expression under prolonged drought in Piriqueta hybrids and their parental taxa. Plant Science, 2010, 178, 429-439.	3.6	4
25	Leaf morphological responses to variation in water availability for plants in the Piriqueta caroliniana complex. Plant Ecology, 2009, 200, 267-275.	1.6	31
26	Evidence for multiple sources of invasion and intraspecific hybridization in <i>Brachypodium sylvaticum </i> (Hudson) Beauv. in North America. Molecular Ecology, 2008, 17, 4657-4669.	3.9	137
27	Isolation and characterization of nine microsatellite markers for <i>Brachypodium sylvaticum</i> (Huds.) Beauv., a recently invasive grass species in Oregon. Molecular Ecology Resources, 2008, 8, 1297-1299.	4.8	6
28	Aerenchyma development and elevated alcohol dehydrogenase activity as alternative responses to hypoxic soils in the <i>Piriqueta caroliniana</i> complex. American Journal of Botany, 2007, 94, 542-550.	1.7	34
29	EVIDENCE OF LOCAL ADAPTATION TO COARSE-GRAINED ENVIRONMENTAL VARIATION IN ARABIDOPSIS THALIANA. Evolution; International Journal of Organic Evolution, 2007, 61, 2419-2432.	2.3	29
30	Plastic responses to temporal variation in moisture availability: consequences for water use efficiency and plant performance. Oecologia, 2007, 153, 821-832.	2.0	82
31	Patterns of introgression across an expanding hybrid zone: analysing historical patterns of gene flow using nonequilibrium approaches. New Phytologist, 2005, 167, 267-278.	7.3	26
32	Contributions of Heterosis and Epistasis to Hybrid Fitness. American Naturalist, 2005, 166, E124-E139.	2.1	89
33	POPULATION SIZE AND FRAGMENTATION THRESHOLDS FOR THE MAINTENANCE OF GENETIC DIVERSITY IN THE HERBACEOUS ENDEMIC SCUTELLARIA MONTANA (LAMIACEAE). Evolution; International Journal of Organic Evolution, 2001, 55, 1569-1580.	2.3	63
34	PATTERNS OF INTRASPECIFIC DIVERSIFICATION IN THE PIRIQUETA CAROLINIANA COMPLEX IN SOUTHEASTERN NORTH AMERICA AND THE BAHAMAS. Evolution; International Journal of Organic Evolution, 2000, 54, 815-827.	2.3	63
35	Gene trees: A powerful tool for exploring the evolutionary biology of species and speciation. Plant Species Biology, 2000, 15, 211-222.	1.0	22
36	Paleoecology and coalescence: phylogeographic analysis of hypotheses from the fossil record. Trends in Ecology and Evolution, 2000, 15, 491-496.	8.7	169

#	Article	IF	Citations
37	Floral morphological changes and reproductive success in deer weed (Lotus scoparius , Fabaceae). American Journal of Botany, 1999, 86, 273-277.	1.7	25
38	Consequences of cytonuclear epistasis and assortative mating for the genetic structure of hybrid populations. Heredity, 1999, 82, 36-45.	2.6	36
39	PATTERNS OF HYBRIDIZATION IN THE <i>PIRIQUETA CAROLINIANA </i> EVIDENCE FOR AN EXPANDING HYBRID ZONE. Evolution; International Journal of Organic Evolution, 1999, 53, 1037-1049.	2.3	35
40	Patterns of Hybridization in the Piriqueta caroliniana Complex in Central Florida: Evidence for an Expanding Hybrid Zone. Evolution; International Journal of Organic Evolution, 1999, 53, 1037.	2.3	43
41	GENETIC MARKERS IN PLANT EVOLUTIONARY ECOLOGY. Ecology, 1998, 79, 400-412.	3.2	78
42	Interspecific mating in the Piriqueta caroliniana (turneraceae) complex: effects of pollen load size and composition. American Journal of Botany, 1998, 85, 1172-1179.	1.7	35
43	NEUTRAL GENE FLOW ACROSS SINGLE LOCUS CLINES. Evolution; International Journal of Organic Evolution, 1998, 52, 1277-1284.	2.3	39
44	Sexual polymorphisms in Narcissus triandrus (Amaryllidaceae): is this species tristylous?. Heredity, 1997, 78, 135-145.	2.6	42
45	Sexual polymorphisms in Narcissus triandrus (Amaryllidaceae): is this species tristylous?. Heredity, 1997, 78, 135-145.	2.6	7
46	Postpollination Mechanisms Influencing Mating Patterns and Fecundity: An Example from Eichhornia paniculata. American Naturalist, 1996, 147, 576-598.	2.1	59
47	Reproductive interactions between hybridizing irises: analyses of pollenâ€tube growth and fertilization success. American Journal of Botany, 1994, 81, 1169-1175.	1.7	96
48	ASSORTATIVE MATING AND NATURAL SELECTION IN AN <i>IRIS</i> IPISIPISIPISIPISIPISIPISIPISIPISIPIS	2.3	99
49	Reproductive Interactions Between Hybridizing Irises: Analyses of Pollen-Tube Growth and Fertilization Success. American Journal of Botany, 1994, 81, 1169.	1.7	44
50	Analysis of pollen-style interactions in Petunia hybrida; the determination of variance in male reproductive success. Sexual Plant Reproduction, 1993, 6, 275.	2.2	29
51	Ecological and Genetic Associations in an Iris Hybrid Zone. Evolution; International Journal of Organic Evolution, 1993, 47, 1432.	2.3	78
52	CONTRIBUTION OF CRYPTIC INCOMPATIBILITY TO THE MATING SYSTEM OF (i) EICHHORNIA PANICULA TA (i) (PONTEDERIACEAE). Evolution; International Journal of Organic Evolution, 1993, 47, 925-934.	2.3	58
53	ECOLOGICAL AND GENETIC ASSOCIATIONS IN AN <i>IRIS</i> I) HYBRID ZONE. Evolution; International Journal of Organic Evolution, 1993, 47, 1432-1445.	2.3	190
54	CPDNA INHERITANCE IN INTERSPECIFIC CROSSES AND EVOLUTIONARY INFERENCE IN LOUISIANA IRISES. American Journal of Botany, 1993, 80, 344-350.	1.7	49

#	Article	IF	CITATION
55	cpDNA Inheritance in Interspecific Crosses and Evolutionary Inference in Louisiana Irises. American Journal of Botany, 1993, 80, 344.	1.7	18
56	VARIATION IN POLLEN SIZE, FERTILIZATION ABILITY, AND POSTFERTILIZATION SIRING ABILITY IN <i>ERYTHRONIUM GRANDIFLORUM</i> . Evolution; International Journal of Organic Evolution, 1990, 44, 843-856.	2.3	76
57	POLLENâ€POLLEN AND POLLENâ€STYLE INTERACTIONS DURING POLLEN TUBE GROWTH IN ERYTHRONIUM GRANDIFLORUM (LILIACEAE). American Journal of Botany, 1990, 77, 116-122.	1.7	93
58	POLLEN TUBE ATTRITION IN ERYTHRONIUM GRANDIFLORUM. American Journal of Botany, 1989, 76, 562-570.	1.7	75
59	Temporal Patterns of Nectar and Pollen Production in Aralia Hispida: Implications for Reproductive Success. Ecology, 1989, 70, 1061-1068.	3.2	78
60	Pollen Tube Attrition in Erythronium grandiflorum. American Journal of Botany, 1989, 76, 562.	1.7	22
61	POLLEN TUBE DISTRIBUTIONS IN NICOTIANA GLAUCA: EVIDENCE FOR DENSITY DEPENDENT GROWTH. American Journal of Botany, 1986, 73, 902-907.	1.7	72
62	Sexual reproduction and variation in floral morphology in an ephemeral vernal lily, Eyythronium americanum. Oecologia, 1985, 67, 286-291.	2.0	80