
Soren R Paludan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2002822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	STING orchestrates the crosstalk between polyunsaturated fatty acid metabolism and inflammatory responses. Cell Metabolism, 2022, 34, 125-139.e8.	16.2	49
2	Innate immunological pathways in COVID-19 pathogenesis. Science Immunology, 2022, 7, eabm5505.	11.9	101
3	Microglia Activate Early Antiviral Responses upon Herpes Simplex Virus 1 Entry into the Brain to Counteract Development of Encephalitis-Like Disease in Mice. Journal of Virology, 2022, 96, JVI0131121.	3.4	10
4	The presence of serum antiâ€SARSâ€CoVâ€2 IgA appears to protect primary health care workers from COVIDâ€19. European Journal of Immunology, 2022, 52, 800-809.	2.9	15
5	TLR2 and TLR7 mediate distinct immunopathological and antiviral plasmacytoid dendritic cell responses to SARSâ€CoVâ€2 infection. EMBO Journal, 2022, 41, e109622.	7.8	46
6	A Capsid Virus-Like Particle-Based SARS-CoV-2 Vaccine Induces High Levels of Antibodies and Protects Rhesus Macaques. Frontiers in Immunology, 2022, 13, 857440.	4.8	15
7	Life-threatening viral disease in a novel form of autosomal recessive <i>IFNAR2</i> deficiency in the Arctic. Journal of Experimental Medicine, 2022, 219, .	8.5	33
8	Identification of FDA-approved Bifonazole as SARS-CoV-2 blocking agent following a bioreporter drug screen. Molecular Therapy, 2022, , .	8.2	5
9	Essential role of autophagy in restricting poliovirus infection revealed by identification of an ATG7 defect in a poliomyelitis patient. Autophagy, 2021, 17, 2449-2464.	9.1	10
10	Constitutive immune mechanisms: mediators of host defence and immune regulation. Nature Reviews Immunology, 2021, 21, 137-150.	22.7	152
11	lonophore antibiotic X-206 is a potent inhibitor of SARS-CoV-2 infection in vitro. Antiviral Research, 2021, 185, 104988.	4.1	18
12	Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production. Journal of Clinical Investigation, 2021, 131, .	8.2	61
13	Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity. Nature Communications, 2021, 12, 324.	12.8	79
14	Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nature Biomedical Engineering, 2021, 5, 144-156.	22.5	98
15	Targeting herpes simplex virus with CRISPR–Cas9 cures herpetic stromal keratitis in mice. Nature Biotechnology, 2021, 39, 567-577.	17.5	91
16	In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun. Oncogene, 2021, 40, 2437-2447.	5.9	21
17	A STING antagonist modulating the interaction with STIM1 blocks ER-to-Golgi trafficking and inhibits lupus pathology. EBioMedicine, 2021, 66, 103314.	6.1	31
18	SARS-CoV-2 Neutralizing Antibody Responses towards Full-Length Spike Protein and the Receptor-Binding Domain. Journal of Immunology, 2021, 207, 878-887.	0.8	30

#	Article	IF	CITATIONS
19	Viral infection of the ovaries compromises pregnancy and reveals innate immune mechanisms protecting fertility. Immunity, 2021, 54, 1478-1493.e6.	14.3	6
20	Characterization of DNA–protein complexes by nanoparticle tracking analysis and their association with systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
21	Constitutive and latent immune mechanisms exert â€~silent' control of virus infections in the central nervous system. Current Opinion in Immunology, 2021, 72, 158-166.	5.5	9
22	Antiviral Potential of the Antimicrobial Drug Atovaquone against SARS-CoV-2 and Emerging Variants of Concern. ACS Infectious Diseases, 2021, 7, 3034-3051.	3.8	17
23	Herpes Simplex Virus 1 and 2 Infections during Differentiation of Human Cortical Neurons. Viruses, 2021, 13, 2072.	3.3	5
24	The alpha/B.1.1.7 SARS-CoV-2 variant exhibits significantly higher affinity for ACE-2 and requires lower inoculation doses to cause disease in K18-hACE2 mice. ELife, 2021, 10, .	6.0	24
25	Single-Cell Monitoring of Activated Innate Immune Signaling by a d2eGFP-Based Reporter Mimicking Time-Restricted Activation of IFNB1 Expression. Frontiers in Cellular and Infection Microbiology, 2021, 11, 784762.	3.9	5
26	B Cell Intrinsic STING Signaling Is Not Required for Autoreactive Germinal Center Participation. Frontiers in Immunology, 2021, 12, 782558.	4.8	3
27	The cGAS-STING pathway is a therapeutic target in a preclinical model of hepatocellular carcinoma. Oncogene, 2020, 39, 1652-1664.	5.9	52
28	STING Mediates Lupus via the Activation of Conventional Dendritic Cell Maturation and Plasmacytoid Dendritic Cell Differentiation. IScience, 2020, 23, 101530.	4.1	47
29	SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nature Communications, 2020, 11, 4938.	12.8	272
30	STEEP mediates STING ER exit and activation of signaling. Nature Immunology, 2020, 21, 868-879.	14.5	82
31	Characterization of distinct molecular interactions responsible for IRF3 and IRF7 phosphorylation and subsequent dimerization. Nucleic Acids Research, 2020, 48, 11421-11433.	14.5	28
32	HSV1 VP1-2 deubiquitinates STING to block type I interferon expression and promote brain infection. Journal of Experimental Medicine, 2020, 217, .	8.5	61
33	Defects in <i>LC3B2</i> and <i>ATG4A</i> underlie HSV2 meningitis and reveal a critical role for autophagy in antiviral defense in humans. Science Immunology, 2020, 5, .	11.9	27
34	Corona's new coat: SARS-CoV-2 in Danish minks and implications for travel medicine. Travel Medicine and Infectious Disease, 2020, 38, 101922.	3.0	24
35	Lysyl-tRNA synthetase produces diadenosine tetraphosphate to curb STING-dependent inflammation. Science Advances, 2020, 6, eaax3333.	10.3	25
36	Size-Selective Phagocytic Clearance of Fibrillar α-Synuclein through Conformational Activation of Complement Receptor 4. Journal of Immunology, 2020, 204, 1345-1361.	0.8	23

#	Article	IF	CITATIONS
37	Mutations in RNA Polymerase III genes and defective DNA sensing in adults with varicella-zoster virus CNS infection. Genes and Immunity, 2019, 20, 214-223.	4.1	54
38	Intercellular communication in the innate immune system through the cGAS-STING pathway. Methods in Enzymology, 2019, 625, 1-11.	1.0	5
39	The herpesviral antagonist m152 reveals differential activation of <scp>STING</scp> â€dependent <scp>IRF</scp> and <scp>NF</scp> â€PB signaling and <scp>STING</scp> 's dual role during <scp>MCMV</scp> infection. EMBO Journal, 2019, 38, .	7.8	77
40	Cellular Requirements for Sensing and Elimination of Incoming HSV-1 DNA and Capsids. Journal of Interferon and Cytokine Research, 2019, 39, 191-204.	1.2	20
41	Intracellular bacteria engage a STING–TBK1–MVB12b pathway to enable paracrine cGAS–STING signalling. Nature Microbiology, 2019, 4, 701-713.	13.3	100
42	T. gondii inveSTING in a latent future. Journal of Biological Chemistry, 2019, 294, 16509-16510.	3.4	0
43	Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nature Medicine, 2019, 25, 1873-1884.	30.7	76
44	DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nature Reviews Immunology, 2019, 19, 141-153.	22.7	123
45	Attenuation of c <scp>GAS</scp> ― <scp>STING</scp> signaling is mediated by a p62/ <scp>SQSTM</scp> 1â€dependent autophagy pathway activated by TBK1. EMBO Journal, 2018, 37, .	7.8	283
46	Varicella-zoster virus CNS vasculitis and RNA polymerase III gene mutation in identical twins. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e500.	6.0	49
47	STING agonists enable antiviral cross-talk between human cells and confer protection against genital herpes in mice. PLoS Pathogens, 2018, 14, e1006976.	4.7	43
48	RNA Polymerase III as a Gatekeeper to Prevent Severe VZV Infections. Trends in Molecular Medicine, 2018, 24, 904-915.	6.7	35
49	Viral evasion of DNA-stimulated innate immune responses. Cellular and Molecular Immunology, 2017, 14, 4-13.	10.5	72
50	IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nature Communications, 2017, 8, 14391.	12.8	236
51	Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure. Molecular Immunology, 2017, 91, 225-237.	2.2	34
52	Live and let die: ZBP1 senses viral and cellular RNAs to trigger necroptosis. EMBO Journal, 2017, 36, 2470-2472.	7.8	8
53	Cutting Edge: Genetic Association between IFI16 Single Nucleotide Polymorphisms and Resistance to Genital Herpes Correlates with IFI16 Expression Levels and HSV-2–Induced IFN-β Expression. Journal of Immunology, 2017, 199, 2613-2617.	0.8	21
54	<scp>cGAS</scp> is activated by <scp>DNA</scp> in a lengthâ€dependent manner. EMBO Reports, 2017, 18, 1707-1715.	4.5	201

Soren R Paludan

#	Article	IF	CITATIONS
55	Molecular requirements for sensing of intracellular microbial nucleic acids by the innate immune system. Cytokine, 2017, 98, 4-14.	3.2	33
56	Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. Journal of Clinical Investigation, 2017, 127, 3543-3556.	8.2	125
57	Vaginal HSV-2 Infection and Tissue Analysis. Bio-protocol, 2017, 7, e2383.	0.4	2
58	Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology, 2016, 64, 746-759.	7.3	137
59	<scp>HSV</scp> â€1 <scp>ICP</scp> 27 targets the <scp>TBK</scp> 1â€activated STING signalsome to inhibit virusâ€induced type I <scp>IFN</scp> Âexpression. EMBO Journal, 2016, 35, 1385-1399.	7.8	173
60	Sensing of HSV-1 by the cGAS–STING pathway in microglia orchestrates antiviral defence in the CNS. Nature Communications, 2016, 7, 13348.	12.8	245
61	Innate Antiviral Defenses Independent of Inducible IFNα/β Production. Trends in Immunology, 2016, 37, 588-596.	6.8	35
62	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
63	Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. Nature Communications, 2016, 7, 10680.	12.8	169
64	An innate antiviral pathway acting before interferons at epithelial surfaces. Nature Immunology, 2016, 17, 150-158.	14.5	59
65	Sensors of Viral Infection. , 2016, , 200-206.		0
66	Evasion of Innate Cytosolic DNA Sensing by a Gammaherpesvirus Facilitates Establishment of Latent Infection. Journal of Immunology, 2015, 194, 1819-1831.	0.8	88
67	Innate Recognition of Alphaherpesvirus DNA. Advances in Virus Research, 2015, 92, 63-100.	2.1	33
68	Functional IRF3 deficiency in a patient with herpes simplex encephalitis. Journal of Experimental Medicine, 2015, 212, 1371-1379.	8.5	171
69	Activation and Regulation of DNA-Driven Immune Responses. Microbiology and Molecular Biology Reviews, 2015, 79, 225-241.	6.6	100
70	Catching the adaptor— <scp>WDFY</scp> 1, a new player in the <scp>TLR</scp> – <scp>TRIF</scp> pathway. EMBO Reports, 2015, 16, 397-398.	4.5	5
71	Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis. Genes and Immunity, 2015, 16, 552-566.	4.1	75
72	Inflammatory Cytokines Break Down Intrinsic Immunological Tolerance of Human Primary Keratinocytes to Cytosolic DNA. Journal of Immunology, 2014, 192, 2395-2404.	0.8	44

#	Article	IF	CITATIONS
73	A Coding IRAK2 Protein Variant Compromises Toll-like receptor (TLR) Signaling and Is Associated with Colorectal Cancer Survival. Journal of Biological Chemistry, 2014, 289, 23123-23131.	3.4	18
74	Innate DNA sensing is impaired in HIV patients and IFI16 expression correlates with chronic immune activation. Clinical and Experimental Immunology, 2014, 177, 295-309.	2.6	31
75	Sensing the hybrida novel PAMP for TLR9. EMBO Journal, 2014, 33, 529-530.	7.8	4
76	Innate antiviral signalling in the central nervous system. Trends in Immunology, 2014, 35, 79-87.	6.8	59
77	<i>Listeria monocytogenes</i> induces IFNβ expression through an IFI16â€; cGAS―and STINGâ€dependent pathway. EMBO Journal, 2014, 33, 1654-1666.	7.8	232
78	TRAM Is Required for TLR2 Endosomal Signaling to Type I IFN Induction. Journal of Immunology, 2014, 193, 6090-6102.	0.8	92
79	IFI16: At the interphase between innate DNA sensing and genome regulation. Cytokine and Growth Factor Reviews, 2014, 25, 649-655.	7.2	51
80	Viral Infections and the DNA Sensing Pathway: Lessons from Herpesviruses and Beyond. , 2014, , 171-203.		0
81	T Cells Detect Intracellular DNA but Fail to Induce Type I IFN Responses: Implications for Restriction of HIV Replication. PLoS ONE, 2014, 9, e84513.	2.5	45
82	DNA recognition in immunity and disease. Current Opinion in Immunology, 2013, 25, 13-18.	5.5	53
83	Proteasomal Degradation of Herpes Simplex Virus Capsids in Macrophages Releases DNA to the Cytosol for Recognition by DNA Sensors. Journal of Immunology, 2013, 190, 2311-2319.	0.8	171
84	Immune Sensing of DNA. Immunity, 2013, 38, 870-880.	14.3	672
85	IF116 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4571-80.	7.1	285
86	Caught in translation: innate restriction of HIV mRNA translation by a schlafen family protein. Cell Research, 2013, 23, 320-322.	12.0	21
87	Interleukin-21 Receptor Signalling Is Important for Innate Immune Protection against HSV-2 Infections. PLoS ONE, 2013, 8, e81790.	2.5	10
88	Differential Impact of Interferon Regulatory Factor 7 in Initiation of the Type I Interferon Response in the Lymphocytic Choriomeningitis Virus-Infected Central Nervous System versus the Periphery. Journal of Virology, 2012, 86, 7384-7392.	3.4	15
89	TLR9-adjuvanted pneumococcal conjugate vaccine induces antibody-independent memory responses in HIV-infected adults. Human Vaccines and Immunotherapeutics, 2012, 8, 1042-1047.	3.3	15
90	Crystal Structure of Interleukin-21 Receptor (IL-21R) Bound to IL-21 Reveals That Sugar Chain Interacting with WSXWS Motif Is Integral Part of IL-21R. Journal of Biological Chemistry, 2012, 287, 9454-9460.	3.4	76

Soren R Paludan

#	Article	IF	CITATIONS
91	Antiviral and Immunological Effects of Tenofovir Microbicide in Vaginal Herpes Simplex Virus 2 Infection. AIDS Research and Human Retroviruses, 2012, 28, 1404-1411.	1.1	14
92	MyD88 Drives the IFN-β Response to <i>Lactobacillus acidophilus</i> in Dendritic Cells through a Mechanism Involving IRF1, IRF3, and IRF7. Journal of Immunology, 2012, 189, 2860-2868.	0.8	63
93	Pattern recognition receptor responses in children with chronic hepatitis B virus infection. Journal of Clinical Virology, 2012, 54, 229-234.	3.1	12
94	Mitochondria-derived reactive oxygen species negatively regulates immune innate signaling pathways triggered by a DNA virus, but not by an RNA virus. Biochemical and Biophysical Research Communications, 2012, 418, 806-810.	2.1	14
95	Genomic HIV RNA Induces Innate Immune Responses through RIG-I-Dependent Sensing of Secondary-Structured RNA. PLoS ONE, 2012, 7, e29291.	2.5	119
96	TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. Journal of Clinical Investigation, 2012, 122, 1368-1376.	8.2	141
97	Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nature Immunology, 2012, 13, 737-743.	14.5	207
98	Activation of Autophagy by α-Herpesviruses in Myeloid Cells Is Mediated by Cytoplasmic Viral DNA through a Mechanism Dependent on Stimulator of IFN Genes. Journal of Immunology, 2011, 187, 5268-5276.	0.8	95
99	Recognition of herpesviruses by the innate immune system. Nature Reviews Immunology, 2011, 11, 143-154.	22.7	293
100	Tenofovir Selectively Regulates Production of Inflammatory Cytokines and Shifts the IL-12/IL-10 Balance in Human Primary Cells. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 57, 265-275.	2.1	65
101	HSV Infection Induces Production of ROS, which Potentiate Signaling from Pattern Recognition Receptors: Role for S-glutathionylation of TRAF3 and 6. PLoS Pathogens, 2011, 7, e1002250.	4.7	107
102	Innate immune recognition and activation during HIV infection. Retrovirology, 2010, 7, 54.	2.0	137
103	IFI16 is an innate immune sensor for intracellular DNA. Nature Immunology, 2010, 11, 997-1004.	14.5	1,369
104	Extracellular 2′-5′ Oligoadenylate Synthetase Stimulates RNase L-Independent Antiviral Activity: a Novel Mechanism of Virus-Induced Innate Immunity. Journal of Virology, 2010, 84, 11898-11904.	3.4	93
105	Early Innate Recognition of Herpes Simplex Virus in Human Primary Macrophages Is Mediated via the MDA5/MAVS-Dependent and MDA5/MAVS/RNA Polymerase III-Independent Pathways. Journal of Virology, 2010, 84, 11350-11358.	3.4	114
106	Expression of Type III Interferon (IFN) in the Vaginal Mucosa Is Mediated Primarily by Dendritic Cells and Displays Stronger Dependence on NF-κB than Type I IFNs. Journal of Virology, 2010, 84, 4579-4586.	3.4	86
107	Mechanisms of Type III Interferon Expression. Journal of Interferon and Cytokine Research, 2010, 30, 573-578.	1.2	77
108	The p38 MAPK Regulates IL-24 Expression by Stabilization of the 3′ UTR of IL-24 mRNA. PLoS ONE, 2010, 5, e8671.	2.5	35

7

#	Article	IF	CITATIONS
109	Induction of Interferon-Stimulated Genes by Chlamydia pneumoniae in Fibroblasts Is Mediated by Intracellular Nucleotide-Sensing Receptors. PLoS ONE, 2010, 5, e10005.	2.5	9
110	Interferon-λ Is Functionally an Interferon but Structurally Related to the Interleukin-10 Family. Journal of Biological Chemistry, 2009, 284, 20869-20875.	3.4	176
111	TLR3 Ligand Polyinosinic:Polycytidylic Acid Induces IL-17A and IL-21 Synthesis in Human Th Cells. Journal of Immunology, 2009, 183, 4422-4431.	0.8	37
112	RIG-I-mediated Activation of p38 MAPK Is Essential for Viral Induction of Interferon and Activation of Dendritic Cells. Journal of Biological Chemistry, 2009, 284, 10774-10782.	3.4	104
113	Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like receptors, which synergize to induce type I interferon production. Journal of General Virology, 2009, 90, 74-78.	2.9	106
114	Activation and Evasion of Innate Antiviral Immunity by Herpes Simplex Virus. Viruses, 2009, 1, 737-759.	3.3	56
115	Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature Medicine, 2009, 15, 97-103.	30.7	404
116	Role of mitogenâ€activated protein kinases, nuclear factorâ€̂ºB, and interferon regulatory factor 3 in Tollâ€like receptor 4â€mediated activation of HIV long terminal repeat. Apmis, 2009, 117, 124-132.	2.0	9
117	Innate recognition of intracellular pathogens: detection and activation of the first line of defense. Apmis, 2009, 117, 323-337.	2.0	83
118	Type III IFNs: New layers of complexity in innate antiviral immunity. BioFactors, 2009, 35, 82-87.	5.4	91
119	Chitosan/siRNA Nanoparticle–mediated TNF-α Knockdown in Peritoneal Macrophages for Anti-inflammatory Treatment in a Murine Arthritis Model. Molecular Therapy, 2009, 17, 162-168.	8.2	270
120	Differential Regulation of the <i>OASL</i> and <i>OAS1</i> Genes in Response to Viral Infections. Journal of Interferon and Cytokine Research, 2009, 29, 199-208.	1.2	100
121	Delivery of siRNA from lyophilized polymeric surfaces. Biomaterials, 2008, 29, 506-512.	11.4	100
122	Streptococcus pneumoniae stabilizes tumor necrosis factor α mRNA through a pathway dependent on p38 MAPK but independent of Toll-like receptors. BMC Immunology, 2008, 9, 52.	2.2	4
123	Mechanisms of Dexamethasone-Mediated Inhibition of Toll-Like Receptor Signaling Induced by <i>Neisseria meningitidis</i> and <i>Streptococcus pneumoniae</i> . Infection and Immunity, 2008, 76, 189-197.	2.2	61
124	Important Role for Toll-Like Receptor 9 in Host Defense against Meningococcal Sepsis. Infection and Immunity, 2008, 76, 5421-5428.	2.2	42
125	The p59 oligoadenylate synthetase-like protein possesses antiviral activity that requires the C-terminal ubiquitin-like domain. Journal of General Virology, 2008, 89, 2767-2772.	2.9	56
126	Interferon-λ Contributes to Innate Immunity of Mice against Influenza A Virus but Not against Hepatotropic Viruses. PLoS Pathogens, 2008, 4, e1000151.	4.7	276

#	Article	IF	CITATIONS
127	TLR2 and TLR9 Synergistically Control Herpes Simplex Virus Infection in the Brain. Journal of Immunology, 2008, 181, 8604-8612.	0.8	157
128	An Important Role for Type III Interferon (IFN-λ/IL-28) in TLR-Induced Antiviral Activity. Journal of Immunology, 2008, 180, 2474-2485.	0.8	387
129	Type III Interferon (IFN) Induces a Type I IFN-Like Response in a Restricted Subset of Cells through Signaling Pathways Involving both the Jak-STAT Pathway and the Mitogen-Activated Protein Kinases. Journal of Virology, 2007, 81, 7749-7758.	3.4	404
130	Type I Interferon Production during Herpes Simplex Virus Infection Is Controlled by Cell-Type-Specific Viral Recognition through Toll-Like Receptor 9, the Mitochondrial Antiviral Signaling Protein Pathway, and Novel Recognition Systems. Journal of Virology, 2007, 81, 13315-13324.	3.4	145
131	Double-Stranded RNA Is Produced by Positive-Strand RNA Viruses and DNA Viruses but Not in Detectable Amounts by Negative-Strand RNA Viruses. Journal of Virology, 2006, 80, 5059-5064.	3.4	828
132	IFN-λ: Novel Antiviral Cytokines. Journal of Interferon and Cytokine Research, 2006, 26, 373-379.	1.2	170
133	Lambda Interferon (IFN-λ), a Type III IFN, Is Induced by Viruses and IFNs and Displays Potent Antiviral Activity against Select Virus Infections In Vivo. Journal of Virology, 2006, 80, 4501-4509.	3.4	536
134	Interleukin-21 mRNA expression during virus infections. Cytokine, 2006, 33, 41-45.	3.2	27
135	Two Neisseria meningitidis Strains with Different Ability to Stimulate Toll-Like Receptor 4 Through the MyD88-Independent Pathway. Scandinavian Journal of Immunology, 2006, 64, 646-654.	2.7	14
136	Mitogen- and Stress-Activated Protein Kinase 1 Is Activated in Lesional Psoriatic Epidermis and Regulates the Expression of Pro-Inflammatory Cytokines. Journal of Investigative Dermatology, 2006, 126, 1784-1791.	0.7	58
137	Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-I°B and IRF-3. Journal of General Virology, 2006, 87, 1099-1108.	2.9	143
138	Live <i>Streptococcus pneumoniae</i> , <i>Haemophilus influenzae</i> , and <i>Neisseria meningitidis</i> activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. Journal of Leukocyte Biology, 2006, 80, 267-277.	3.3	154
139	Reading the viral signature by Toll-like receptors and other pattern recognition receptors. Journal of Molecular Medicine, 2005, 83, 180-192.	3.9	118
140	Activation of Innate Defense against a Paramyxovirus Is Mediated by RIG-I and TLR7 and TLR8 in a Cell-Type-Specific Manner. Journal of Virology, 2005, 79, 12944-12951.	3.4	162
141	Age-Dependent Role for CCR5 in Antiviral Host Defense against Herpes Simplex Virus Type 2. Journal of Virology, 2005, 79, 9831-9841.	3.4	27
142	p38 MAPK Autophosphorylation Drives Macrophage IL-12 Production during Intracellular Infection. Journal of Immunology, 2005, 174, 4178-4184.	0.8	107
143	Viral Activation of Macrophages through TLR-Dependent and -Independent Pathways. Journal of Immunology, 2004, 173, 6890-6898.	0.8	109
144	Long-Term Renal Effects of a Neutralizing RAGE Antibody in Obese Type 2 Diabetic Mice. Diabetes, 2004, 53, 166-172.	0.6	199

#	Article	IF	CITATIONS
145	Suppression of Proinflammatory Cytokine Expression by Herpes Simplex Virus Type 1. Journal of Virology, 2004, 78, 5883-5890.	3.4	66
146	Mannan-binding lectin modulates the response to HSV-2 infection. Clinical and Experimental Immunology, 2004, 138, 304-311.	2.6	77
147	Blocking CC Chemokine Receptor (CCR) 1 and CCR5 During Herpes Simplex Virus Type 2 Infection In Vivo Impairs Host Defence and Perturbs the Cytokine Response. Scandinavian Journal of Immunology, 2004, 59, 321-333.	2.7	40
148	Differential Requirements for Toll‣ike Receptor Signalling for Induction of Chemokine Expression by Herpes Simplex Virus and Sendai Virus. Scandinavian Journal of Immunology, 2004, 59, 617-617.	2.7	0
149	Induction of RANTES/CCL5 by herpes simplex virus is regulated by nuclear factor κB and interferon regulatory factor 3. Journal of General Virology, 2003, 84, 2491-2495.	2.9	34
150	Interferon (IFN)-α/β, interleukin (IL)-12 and IL-18 coordinately induce production of IFN-γ during infection with herpes simplex virus type 2. Journal of General Virology, 2003, 84, 2497-2500.	2.9	26
151	Expression and function of chemokines during viral infections: from molecular mechanisms to in vivo function. Journal of Leukocyte Biology, 2003, 74, 331-343.	3.3	156
152	Activation of NF-ήB in Virus-Infected Macrophages Is Dependent on Mitochondrial Oxidative Stress and Intracellular Calcium: Downstream Involvement of the Kinases TGF-β-Activated Kinase 1, Mitogen-Activated Kinase/Extracellular Signal-Regulated Kinase Kinase 1, and IήB Kinase. Journal of Immunology, 2003, 170, 6224-6233.	0.8	61
153	Herpes Simplex Virus Selectively Induces Expression of the CC Chemokine RANTES/CCL5 in Macrophages through a Mechanism Dependent on PKR and ICP0. Journal of Virology, 2002, 76, 2780-2788.	3.4	56
154	Expression of genes for cytokines and cytokine-related functions in leukocytes infected with Herpes simplex virus: comparison between resistant and susceptible mouse strains. European Cytokine Network, 2002, 13, 306-16.	2.0	14
155	Requirements for the Induction of Interleukin-6 by Herpes Simplex Virus-Infected Leukocytes. Journal of Virology, 2001, 75, 8008-8015.	3.4	73
156	Molecular Pathways in Virus-Induced Cytokine Production. Microbiology and Molecular Biology Reviews, 2001, 65, 131-150.	6.6	368
157	Expression of TNF.α by Herpes Simplex Virus-Infected Macrophages Is Regulated by a Dual Mechanism: Transcriptional Regulation by NF.I® and Activating Transcription Factor 2/Jun and Translational Regulation Through the AU-Rich Region of the 3′ Untranslated Region. Journal of Immunology, 2001, 167, 2202-2208.	0.8	46
158	Virus-Cell Interactions Regulating Induction of Tumor Necrosis Factor Alpha Production in Macrophages Infected with Herpes Simplex Virus. Journal of Virology, 2001, 75, 10170-10178.	3.4	36
159	Interferon (IFN)-gamma and Herpes simplex virus/tumor necrosis factor-alpha synergistically induce nitric oxide synthase 2 in macrophages through cooperative action of nuclear factor-kappa B and IFN regulatory factor-1. European Cytokine Network, 2001, 12, 297-308.	2.0	25
160	Virus-cell interactions: impact on cytokine production, immune evasion and tumor growth. European Cytokine Network, 2001, 12, 382-90.	2.0	9
161	Synergistic action of pro-inflammatory agents: cellular and molecular aspects. Journal of Leukocyte Biology, 2000, 67, 18-25.	3.3	156
162	Herpes simplex virus type 2 infection of macrophages impairs IL-4-mediated inhibition of NO production through TNF-α-induced activation of NF-κB. Archives of Virology, 2000, 145, 575-591.	2.1	8

#	Article	IF	CITATIONS
163	Herpes simplex virus type 2 induces secretion of IL-12 by macrophages through a mechanism involving NF-lºB. Journal of General Virology, 2000, 81, 3011-3020.	2.9	49
164	Inhibition of NO production in macrophages by IL-13 is counteracted by Herpes simplex virus infection through tumor necrosis factor-alpha-induced activation of NK-kappa B. European Cytokine Network, 2000, 11, 275-82.	2.0	6
165	Interleukin-4-Mediated Inhibition of Nitric Oxide Production in Interferon-gamma-Treated and Virus-Infected Macrophages. Scandinavian Journal of Immunology, 1999, 49, 169-176.	2.7	35
166	Interleukinâ€4 and Interferonâ€Î³: The Quintessence of a Mutual Antagonistic Relationship. Scandinavian Journal of Immunology, 1998, 48, 459-468.	2.7	181
167	NF-kappaB activation is responsible for the synergistic effect of herpes simplex virus type 2 infection on interferon-gamma-induced nitric oxide production in macrophages Journal of General Virology, 1998, 79, 2785-2793.	2.9	32
168	Effect of IL-4 and IL-13 on IFN-γ-induced production of nitric oxide in mouse macrophages infected with herpes simplex virus type 2. FEBS Letters, 1997, 414, 61-64.	2.8	34