Ning Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2001544/publications.pdf

Version: 2024-02-01

61984 110387 5,206 135 43 64 citations h-index g-index papers 137 137 137 5828 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Heterojunctioned CuO/Cu2O catalyst for highly efficient ozone removal. Journal of Environmental Sciences, 2023, 125, 340-348.	6.1	16
2	Highly efficient ozone elimination by metal doped ultra-fine Cu2O nanoparticles. Journal of Environmental Sciences, 2023, 134, 108-116.	6.1	1
3	High performance ozone decomposition spinel (Mn,Co)3O4 catalyst accelerating the rate-determining step. Applied Catalysis B: Environmental, 2022, 303, 120927.	20.2	35
4	Magnet-assisted electrochemical immunosensor based on surface-clean Pd-Au nanosheets for sensitive detection of SARS-CoV-2 spike protein. Electrochimica Acta, 2022, 404, 139766.	5.2	26
5	In Situ Synthesis of Monolithic Cu ₂ O–CuO/Cu Catalysts for Effective Ozone Decomposition. Journal of Physical Chemistry C, 2022, 126, 317-325.	3.1	13
6	Low-Temperature As-Doped In ₂ O ₃ Nanowires for Room Temperature NO ₂ Gas Sensing. ACS Applied Nano Materials, 2022, 5, 7983-7992.	5.0	3
7	Ambipolar transport in Ni-catalyzed InGaAs nanowire field-effect transistors for near-infrared photodetection. Nanotechnology, 2021, 32, 145203.	2.6	8
8	Defect-engineered three-dimensional vanadium diselenide microflowers/nanosheets on carbon cloth by chemical vapor deposition for high-performance hydrogen evolution reaction. Nanotechnology, 2021, 32, 265402.	2.6	10
9	<110>-growth orientation dependence of Ga2O3 nanowires on Cu3As seeds via vapor-solid-solid mechanism. Journal of Alloys and Compounds, 2021, 864, 158786.	5.5	3
10	Finely dispersed and highly toluene sensitive NiO/NiGa2O4 heterostructures prepared from layered double hydroxides precursors. Sensors and Actuators B: Chemical, 2021, 345, 130412.	7.8	9
11	Porous Au@Pt nanoparticles with superior peroxidase-like activity for colorimetric detection of spike protein of SARS-CoV-2. Journal of Colloid and Interface Science, 2021, 604, 113-121.	9.4	56
12	Facile Electrodeposition of Amorphous Nickel/Nickel Sulfide Composite Films for High-Efficiency Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 927-933.	5.1	21
13	Heterostructured Ni/NiO Nanocatalysts for Ozone Decomposition. ACS Applied Nano Materials, 2020, 3, 597-607.	5.0	62
14	A novel rGO-decorated ZnO/BiVO ₄ heterojunction for the enhancement of NO ₂ sensing properties. Inorganic Chemistry Frontiers, 2020, 7, 1026-1033.	6.0	21
15	rGO modified nanoplate-assembled ZnO/CdO junction for detection of NO2. Journal of Hazardous Materials, 2020, 394, 121832.	12.4	51
16	Sr-Doped Cubic In ₂ O ₃ /Rhombohedral In ₂ O ₃ Homojunction Nanowires for Highly Sensitive and Selective Breath Ethanol Sensing: Experiment and DFT Simulation Studies. ACS Applied Materials & Samp; Interfaces, 2020, 12, 1270-1279.	8.0	58
17	A one-pot synthesis of a monolithic Cu ₂ O/Cu catalyst for efficient ozone decomposition. RSC Advances, 2020, 10, 40916-40922.	3.6	16
18	Novel p-n heterojunction of BiVO4/Cu2O decorated with rGO for low concentration of NO2 detection. Sensors and Actuators B: Chemical, 2020, 320, 128284.	7.8	38

#	Article	IF	CITATIONS
19	Defect engineering of ZnO for electron transfer in O3 catalytic decomposition. Applied Catalysis B: Environmental, 2020, 277, 119223.	20.2	24
20	Co-sputtered Pd/SnO2:NiO heterostructured sensing films for MEMS-based ethanol sensors. Materials Letters, 2020, 273, 127924.	2.6	15
21	Gram-scale synthesis of ultra-fine Cu ₂ O for highly efficient ozone decomposition. RSC Advances, 2020, 10, 5212-5219.	3.6	15
22	Synthesis of novel BiVO4/Cu2O heterojunctions for improving BiVO4 towards NO2 sensing properties. Journal of Colloid and Interface Science, 2020, 567, 37-44.	9.4	29
23	Facile synthesis of stoichiometric InOCl mesoporous material for high performance formaldehyde gas sensors. Sensors and Actuators B: Chemical, 2020, 319, 128078.	7.8	16
24	Aerosol assisted chemical vapour deposition of nanostructured ZnO thin films for NO2 and ethanol monitoring. Ceramics International, 2020, 46, 15152-15158.	4.8	42
25	An α-Fe ₂ O ₃ /NiO pâ€"n hierarchical heterojunction for the sensitive detection of triethylamine. Inorganic Chemistry Frontiers, 2020, 7, 1532-1539.	6.0	26
26	Sensitive Cross-Linked SnO2:NiO Networks for MEMS Compatible Ethanol Gas Sensors. Nanoscale Research Letters, 2020, 15, 35.	5.7	23
27	Nonpolar GaAs Nanowires Catalyzed by CuAs: Insights into As Layer Epitaxy. ACS Omega, 2020, 5, 30963-30970.	3.5	0
28	Nonpolar GaAs Nanowires Catalyzed by Cu ₅ As ₂ : Insights into As Layer Epitaxy. ACS Omega, 2020, 5, 30963-30970.	3.5	2
29	rGO decorated W doped BiVO4 novel material for sensing detection of trimethylamine. Sensors and Actuators B: Chemical, 2019, 298, 126749.	7.8	41
30	rGO decorated CdS/CdO composite for detection of low concentration NO2. Sensors and Actuators B: Chemical, 2019, 299, 126832.	7.8	35
31	Reduced Graphene Oxide-Coated Si Nanowires for Highly Sensitive and Selective Detection of Indoor Formaldehyde. Nanoscale Research Letters, 2019, 14, 97.	5.7	18
32	Improving the signal resolution of semiconductor gas sensors to high-concentration gases. Solid-State Electronics, 2019, 162, 107648.	1.4	5
33	Enhanced gas-sensing performance of metal@ZnO core–shell nanoparticles towards ppb–ppm level benzene: the role of metal–ZnO hetero-interfaces. New Journal of Chemistry, 2019, 43, 2220-2230.	2.8	24
34	Controllable Growth of Lead-Free All-Inorganic Perovskite Nanowire Array with Fast and Stable Near-Infrared Photodetection. Journal of Physical Chemistry C, 2019, 123, 17566-17573.	3.1	78
35	Growth of Ga2O3 Nanowires via Cu-As-Ga Ternary Phase Diagram. Crystals, 2019, 9, 155.	2.2	8
36	High acetone sensitive and reversible P- to N-type switching NO2 sensing properties of Pt@Ga-ZnO core-shell nanoparticles. Sensors and Actuators B: Chemical, 2019, 289, 114-123.	7.8	27

#	Article	IF	Citations
37	Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nature Communications, 2019, 10, 1664.	12.8	70
38	Etched p-Type Si Nanowires for Efficient Ozone Decomposition. Nanoscale Research Letters, 2019, 14, 374.	5.7	3
39	Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition. Applied Catalysis B: Environmental, 2019, 241, 578-587.	20.2	114
40	Ordered mesoporous WO3/ZnO nanocomposites with isotype heterojunctions for sensitive detection of NO2. Sensors and Actuators B: Chemical, 2019, 285, 68-75.	7.8	60
41	One-step electrospun SnO2/MOx heterostructured nanomaterials for highly selective gas sensor array integration. Sensors and Actuators B: Chemical, 2019, 283, 793-801.	7.8	51
42	Modulating Electrical Performances of In ₂ O ₃ Nanofiber Channel Thin Film Transistors via Sr Doping. Advanced Electronic Materials, 2019, 5, 1800707.	5.1	36
43	Sputtered SnO2:NiO thin films on self-assembled Au nanoparticle arrays for MEMS compatible NO2 gas sensors. Sensors and Actuators B: Chemical, 2019, 278, 28-38.	7.8	79
44	Facile solution synthesis of Cu ₂ O–CuO–Cu(OH) ₂ hierarchical nanostructures for effective catalytic ozone decomposition. CrystEngComm, 2018, 20, 3096-3104.	2.6	50
45	Thinâ€Film Transistors: ZnO Nanofiber Thinâ€Film Transistors with Lowâ€Operating Voltages (Adv.) Tj ETQq1 1 (0.784314 5.1	rgBT /Overlo
46	Two-step vapor deposition of self-catalyzed large-size Pbl ₂ nanobelts for high-performance photodetectors. Journal of Materials Chemistry C, 2018, 6, 5746-5753.	5.5	33
47	Synergetic p+n Field-Effect Transistor Circuits for ppb-Level Xylene Detection. IEEE Sensors Journal, 2018, 18, 3875-3882.	4.7	13
48	Enhanced NO ₂ Sensing Property of ZnO by Ga Doping and H ₂ Activation. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700861.	1.8	5
49	Phosphorusâ€Doped MoS ₂ Nanosheets Supported on Carbon Cloths as Efficient Hydrogenâ€Generation Electrocatalysts. ChemCatChem, 2018, 10, 1571-1577.	3.7	55
50	In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition. Catalysis Communications, 2018, 106, 25-29.	3.3	46
51	ZnO Nanofiber Thinâ€Film Transistors with Lowâ€Operating Voltages. Advanced Electronic Materials, 2018, 4, 1700336.	5.1	32
52	High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks. Nano Research, 2018, 11, 1227-1237.	10.4	55
53	Nonpolar-Oriented Wurtzite InP Nanowires with Electron Mobility Approaching the Theoretical Limit. ACS Nano, 2018, 12, 10410-10418.	14.6	30
54	Crystal-Defect-Dependent Gas-Sensing Mechanism of the Single ZnO Nanowire Sensors. ACS Sensors, 2018, 3, 2385-2393.	7.8	69

#	Article	IF	CITATIONS
55	Noble Metal/Tin Dioxide Hierarchical Hollow Spheres for Low-Concentration Breath Methane Sensing. ACS Applied Nano Materials, 2018, 1, 6327-6336.	5.0	30
56	GaAs Nanowires Grown by Catalyst Epitaxy for High Performance Photovoltaics. Crystals, 2018, 8, 347.	2.2	8
57	Synthesis of Pd-loaded mesoporous SnO ₂ hollow spheres for highly sensitive and stable methane gas sensors. RSC Advances, 2018, 8, 24268-24275.	3.6	53
58	Controlled Growth of Heterostructured Ga/GaAs Nanowires with Sharp Schottky Barrier. Crystal Growth and Design, 2018, 18, 4438-4444.	3.0	4
59	Cu ₂ O and rGO Hybridizing for Enhancement of Low-Concentration NO ₂ Sensing at Room Temperature. Industrial & Engineering Chemistry Research, 2018, 57, 10086-10094.	3.7	33
60	Coupling p+n Field-Effect Transistor Circuits for Low Concentration Methane Gas Detection. Sensors, 2018, 18, 787.	3.8	9
61	Transilient Response to Acetone Gas Using the Interlocking p+n Field-Effect Transistor Circuit. Sensors, 2018, 18, 1914.	3.8	9
62	Chalcogen passivation: an in-situ method to manipulate theÂmorphology and electrical property of GaAs nanowires. Scientific Reports, 2018, 8, 6928.	3.3	7
63	Highly sensitive and selective ethanol and acetone gas sensors based on modified ZnO nanomaterials. Materials and Design, 2017, 121, 69-76.	7.0	71
64	Amplifying the Signal of Metal Oxide Gas Sensors for Low Concentration Gas Detection. IEEE Sensors Journal, 2017, 17, 2841-2847.	4.7	32
65	Low temperature decomposition of ozone by facilely synthesized cuprous oxide catalyst. New Journal of Chemistry, 2017, 41, 4828-4834.	2.8	34
66	Manipulating Ill–V Nanowire Transistor Performance via Surface Decoration of Metalâ€Oxide Nanoparticles. Advanced Materials Interfaces, 2017, 4, 1700260.	3.7	13
67	Controllable III–V nanowire growth via catalyst epitaxy. Journal of Materials Chemistry C, 2017, 5, 4393-4399.	5.5	17
68	Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟹111⟩-Oriented GaSb Nanowires Enabled by Vapor–Solid–Solid Chemical Vapor Deposition. ACS Nano, 2017, 11, 4237-4246.	14.6	38
69	Facetâ€dependent gas sensing properties of Cu ₂ O crystals. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600904.	1.8	20
70	Abnormal n-p-n type conductivity transition of hollow ZnO/ZnFe2O4 nanostructures during gas sensing process: The role of ZnO-ZnFe2O4 hetero-interface. Sensors and Actuators B: Chemical, 2017, 253, 144-155.	7.8	55
71	Nanowire Transistors: Manipulating Ill–V Nanowire Transistor Performance via Surface Decoration of Metalâ€Oxide Nanoparticles (Adv. Mater. Interfaces 12/2017). Advanced Materials Interfaces, 2017, 4, .	3.7	0
72	MOF-derived hierarchical ZnO/ZnFe ₂ O ₄ hollow cubes for enhanced acetone gas-sensing performance. RSC Advances, 2017, 7, 34609-34617.	3.6	58

#	Article	IF	Citations
73	Green Catalytic Degradation of Ethyl Acetate Incurred by Strong Interaction Between PdO and Ce0.5Co0.5 Support at Low Temperature. Catalysis Letters, 2017, 147, 128-140.	2.6	6
74	Ag-Modified In2O3 Nanoparticles for Highly Sensitive and Selective Ethanol Alarming. Sensors, 2017, 17, 2220.	3.8	18
75	Diameter Dependence of Planar Defects in InP Nanowires. Scientific Reports, 2016, 6, 32910.	3.3	13
76	Design and fabrication of 1-D semiconductor nanomaterials for high-performance photovoltaics. Science Bulletin, 2016, 61, 357-367.	9.0	14
77	INTEGRATING SEMICONDUCTOR NANOWIRES FOR HIGH PERFORMANCE FLEXIBLE ELECTRONIC CIRCUITS. , 2016, , $117\text{-}165$.		0
78	Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method. Nanoscale Research Letters, 2016, 11, 191.	5.7	9
79	Decoration of one-dimensional MnO 2 with Co 3 O 4 nanoparticles: A heterogeneous interface for remarkably promoting catalytic oxidation activity. Chemical Engineering Journal, 2016, 306, 709-718.	12.7	100
80	Core-shell Au@ZnO nanoparticles derived from Au@MOF and their sub-ppm level acetone gas-sensing performance. Powder Technology, 2016, 304, 241-247.	4.2	43
81	Catalytic Degradation of Benzene over Nanocatalysts containing Cerium and Manganese. ChemistryOpen, 2016, 5, 495-504.	1.9	10
82	Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays. ACS Nano, 2016, 10, 6283-6290.	14.6	22
83	Effective Ti Doping of \hat{l} -MnO \langle sub \rangle 2 \langle /sub \rangle via Anion Route for Highly Active Catalytic Combustion of Benzene. Journal of Physical Chemistry C, 2016, 120, 10275-10282.	3.1	69
84	Controllable Synthesis and Gas-Sensing Properties of Zinc Oxide Nanocrystals With Exposed Different Percentage of Facets. IEEE Sensors Journal, 2016, 16, 866-872.	4.7	15
85	Low-temperature efficient degradation of ethyl acetate catalyzed by lattice-doped CeO2–CoOx nanocomposites. Catalysis Communications, 2016, 73, 123-127.	3.3	51
86	MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sensors and Actuators B: Chemical, 2016, 225, 158-166.	7.8	191
87	Modulating the Morphology and Electrical Properties of GaAs Nanowires via Catalyst Stabilization by Oxygen. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5591-5597.	8.0	16
88	Modulating Electrical Properties of InAs Nanowires <i>via</i> Molecular Monolayers. ACS Nano, 2015, 9, 7545-7552.	14.6	33
89	High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics. ACS Applied Materials & Description (2015), 7, 20454-20459.	8.0	58
90	Approaching the Hole Mobility Limit of GaSb Nanowires. ACS Nano, 2015, 9, 9268-9275.	14.6	70

#	Article	IF	Citations
91	Design and synthesis of porous non-noble metal oxides for catalytic removal of VOCs. Science China Chemistry, 2015, 58, 1359-1366.	8.2	41
92	III–V Nanowires: Synthesis, Property Manipulations, and Device Applications. Journal of Nanomaterials, 2014, 2014, 1-14.	2.7	32
93	One-Dimensional Nanomaterials for Energy Applications. , 2014, , 75-120.		6
94	Rational Design of Inverted Nanopencil Arrays for Cost-Effective, Broadband, and Omnidirectional Light Harvesting. ACS Nano, 2014, 8, 3752-3760.	14.6	106
95	Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nature Communications, 2014, 5, 5249.	12.8	102
96	Low-temperature growth of highly crystalline \hat{l}^2 -Ga2O3 nanowires by solid-source chemical vapor deposition. Nanoscale Research Letters, 2014, 9, 347.	5.7	15
97	Chemical vapor deposition preparation of nanostructured ZnO particles and their gas-sensing properties. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	20
98	Surface roughness induced electron mobility degradation in InAs nanowires. Nanotechnology, 2013, 24, 375202.	2.6	62
99	Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping. Journal of Materials Chemistry A, 2013, 1, 9942.	10.3	77
100	Crystalline GaSb Nanowires Synthesized on Amorphous Substrates: From the Formation Mechanism to p-Channel Transistor Applications. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10946-10952.	8.0	36
101	GaAs Nanowires: From Manipulation of Defect Formation to Controllable Electronic Transport Properties. ACS Nano, 2013, 7, 9138-9146.	14.6	41
102	Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors. Nanoscale, 2013, 5, 9671.	5.6	32
103	Diameter dependence of electron mobility in InGaAs nanowires. Applied Physics Letters, 2013, 102, .	3.3	31
104	ZnO micro-windbreak for enhanced gas diffusion. Sensors and Actuators B: Chemical, 2013, 186, 614-621.	7.8	12
105	Tunable Electronic Transport Properties of Metalâ€Clusterâ€Decorated Ill–V Nanowire Transistors. Advanced Materials, 2013, 25, 4445-4451.	21.0	68
106	Synthesis, Characterization and Device Applications of InGaAs Nanowires. ECS Transactions, 2013, 50, 179-185.	0.5	0
107	Threshold Tuning of III-V Nanowire Transistors via Metal Clusters Decoration. ECS Transactions, 2013, 58, 113-118.	0.5	0
108	GaAs nanowire Schottky barrier photovoltaics utilizing Au–Ga alloy catalytic tips. Applied Physics Letters, 2012, 101, .	3.3	36

#	Article	IF	Citations
109	Synthesis and Characterizations of Ternary InGaAs Nanowires by a Two-Step Growth Method for High-Performance Electronic Devices. ACS Nano, 2012, 6, 3624-3630.	14.6	86
110	High-performance indium phosphide nanowires synthesized on amorphous substrates: from formation mechanism to optical and electrical transport measurements. Journal of Materials Chemistry, 2012, 22, 10704.	6.7	33
111	One-dimensional nanostructured materials for solar energy harvesting. Nanomaterials and Energy, 2012, 1, 4-17.	0.2	31
112	Highly formaldehyde-sensitive, transition-metal doped ZnO nanorods prepared by plasma-enhanced chemical vapor deposition. Sensors and Actuators B: Chemical, 2012, 169, 74-80.	7.8	122
113	Large-scale and uniform preparation of pure-phase wurtzite GaAs NWs on non-crystalline substrates. Nanoscale Research Letters, 2012, 7, 632.	5.7	12
114	Manipulated Growth of GaAs Nanowires: Controllable Crystal Quality and Growth Orientations via a Supersaturation-Controlled Engineering Process. Crystal Growth and Design, 2012, 12, 6243-6249.	3.0	54
115	Stoichiometric Effect on Electrical, Optical, and Structural Properties of Composition-Tunable InxGa1–xAs Nanowires. ACS Nano, 2012, 6, 9320-9325.	14.6	41
116	Controllable p–n Switching Behaviors of GaAs Nanowires <i>via</i> an Interface Effect. ACS Nano, 2012, 6, 4428-4433.	14.6	61
117	Hydrothermal synthesis of β-FeOOH with different morphologies using NaH2PO4 as structural modifier. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 662-664.	1.0	3
118	Enhanced synthesis method to prepare crystalline GaAs nanowires with high growth yield., 2011,,.		0
119	Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor. Journal of Materials Chemistry, 2011, 21, 14277.	6.7	47
120	Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates. Nanotechnology, 2011, 22, 285607.	2.6	51
121	Crystal phase and growth orientation dependence of GaAs nanowires on Ni _x Ga _y seeds via vapor-solid-solid mechanism. Applied Physics Letters, 2011, 99, 083114.	3.3	23
122	Solution-Controlled Self-Assembly of ZnO Nanorods into Hollow Microspheres. Crystal Growth and Design, 2011, 11, 1520-1526.	3.0	68
123	Pure and Sn-, Ga- and Mn-doped ZnO gas sensors working at different temperatures for formaldehyde, humidity, NH3, toluene and CO. Applied Physics A: Materials Science and Processing, 2011, 104, 627-633.	2.3	36
124	Comparative Study of CeO ₂ and Doped CeO ₂ with Tailored Oxygen Vacancies for CO Oxidation. ChemPhysChem, 2011, 12, 2763-2770.	2.1	56
125	Filter paper-templated preparation of ZnO thin films and examination of their gas-sensing properties. Particuology, 2011, 9, 253-259.	3.6	6
126	CdO activated Sn-doped ZnO for highly sensitive, selective and stable formaldehyde sensor. Sensors and Actuators B: Chemical, 2011, 152, 324-329.	7.8	98

#	ARTICLE	IF	CITATIONS
127	Electrophoretic deposition of metal oxide films aimed for gas sensors application: The role of anodic aluminum oxide (AAO)/Al composite structure. Sensors and Actuators B: Chemical, 2010, 144, 267-273.	7.8	15
128	Photoluminescence investigation on the gas sensing property of ZnO nanorods prepared by plasma-enhanced CVD method. Sensors and Actuators B: Chemical, 2010, 145, 114-119.	7.8	130
129	Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO. Sensors and Actuators B: Chemical, 2010, 147, 525-530.	7.8	122
130	Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors. Sensors and Actuators B: Chemical, 2010, 150, 230-238.	7.8	147
131	Ordered Arrays of Bead-Chain-like In ₂ O ₃ Nanorods and Their Enhanced Sensing Performance for Formaldehyde. Chemistry of Materials, 2010, 22, 3033-3042.	6.7	140
132	Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sensors and Actuators B: Chemical, 2009, 138, 228-235.	7.8	135
133	NiO Thin Film Fabricated by Electrophoretic Deposition and Formaldehyde Gas Sensing Property Thereof. Journal of Nanoscience and Nanotechnology, 2009, 9, 1346-1349.	0.9	8
134	Observations on ozone treatment of excess sludge. Water Science and Technology, 2007, 56, 167-175.	2.5	29
135	Microwave Irradiation: A Novel Method for Rapid Synthesis of D,L-Lactide. Macromolecular Rapid Communications, 2007, 28, 417-421.	3.9	29