
Marco Santoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2001297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnosis and management of acute aortic syndromes in the emergency department. Internal and Emergency Medicine, 2021, 16, 171-181.	2.0	39
2	Development and Validation of a Simplified Probability Assessment Score Integrated With Ageâ€Adjusted <scp>d</scp> â€Dimer for Diagnosis of Acute Aortic Syndromes. Journal of the American Heart Association, 2021, 10, e018425.	3.7	21
3	Hybrid 3D Printing of Synthetic and Cellâ€Laden Bioinks for Shape Retaining Soft Tissue Grafts. Advanced Functional Materials, 2020, 30, 1907145.	14.9	50
4	Aminated 3D Printed Polystyrene Maintains Stem Cell Proliferation and Osteogenic Differentiation. Tissue Engineering - Part C: Methods, 2020, 26, 118-131.	2.1	6
5	Prospective diagnostic accuracy study of plasma soluble ST2 for diagnosis of acute aortic syndromes. Scientific Reports, 2020, 10, 3103.	3.3	12
6	Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomaterialia, 2020, 110, 68-81.	8.3	25
7	Dualâ€chambered membrane bioreactor for coculture of stratified cell populations. Biotechnology and Bioengineering, 2019, 116, 3253-3268.	3.3	6
8	Development of keratin-based membranes for potential use in skin repair. Acta Biomaterialia, 2019, 83, 177-188.	8.3	28
9	Trophoblast–endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model. Biotechnology and Bioengineering, 2019, 116, 181-192.	3.3	30
10	Placental basement membrane proteins are required for effective cytotrophoblast invasion in a threeâ€dimensional bioprinted placenta model. Journal of Biomedical Materials Research - Part A, 2018, 106, 1476-1487.	4.0	42
11	Effects of Shear Stress Gradients on Ewing Sarcoma Cells Using 3D Printed Scaffolds and Flow Perfusion. ACS Biomaterials Science and Engineering, 2018, 4, 347-356.	5.2	30
12	Repair of Tympanic Membrane Perforations with Customized Bioprinted Ear Grafts Using Chinchilla Models. Tissue Engineering - Part A, 2018, 24, 527-535.	3.1	47
13	Assessment of the Effects of Energy Density in Crosslinking of Keratin-Based Photo-Sensitive Resin. , 2018, , .		6
14	Towards rationally designed biomanufacturing of therapeutic extracellular vesicles: impact of the bioproduction microenvironment. Biotechnology Advances, 2018, 36, 2051-2059.	11.7	88
15	Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration. Acta Biomaterialia, 2018, 78, 341-350.	8.3	28
16	Biomimetic Placenta-Fetus Model Demonstrating Maternal–Fetal Transmission and Fetal Neural Toxicity of Zika Virus. Annals of Biomedical Engineering, 2018, 46, 1963-1974.	2.5	28
17	Modeling Stroma-Induced Drug Resistance in a Tissue-Engineered Tumor Model of Ewing Sarcoma. Tissue Engineering - Part A, 2017, 23, 80-89.	3.1	24
18	Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering. Acta Biomaterialia, 2017, 50, 68-77.	8.3	37

MARCO SANTORO

#	Article	IF	CITATIONS
19	Acellular mineral deposition within injectable, dualâ€gelling hydrogels for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2017, 105, 110-117.	4.0	8
20	Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 2016, 107, 206-212.	13.7	336
21	Extrusion-Based 3D Printing of Poly(propylene fumarate) in a Full-Factorial Design. ACS Biomaterials Science and Engineering, 2016, 2, 1771-1780.	5.2	85
22	Flow perfusion effects on three-dimensional culture and drug sensitivity of Ewing sarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10304-10309.	7.1	93
23	Polymeric scaffolds as stem cell carriers in bone repair. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1093-1119.	2.7	41
24	3D tissue-engineered model of Ewing's sarcoma. Advanced Drug Delivery Reviews, 2014, 79-80, 155-171.	13.7	39
25	Gelatin carriers for drug and cell delivery in tissue engineering. Journal of Controlled Release, 2014, 190, 210-218.	9.9	299
26	Direct and indirect co-culture of chondrocytes and mesenchymal stem cells for the generation of polymer/extracellular matrix hybrid constructs. Acta Biomaterialia, 2014, 10, 1824-1835.	8.3	69