Barry Ganetzky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/200070/publications.pdf Version: 2024-02-01

RADDY CANETZKY

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell, 1989, 58, 1143-1154.	28.9	508
3	INDIRECT SUPPRESSION INVOLVING BEHAVIORAL MUTANTS WITH ALTERED NERVE EXCITABILITY IN <i>DROSOPHILA MELANOGASTER</i> . Genetics, 1982, 100, 597-614.	2.9	205
4	Temperature-Sensitive Paralytic Mutations Demonstrate that Synaptic Exocytosis Requires SNARE Complex Assembly and Disassembly. Neuron, 1998, 21, 401-413.	8.1	198
5	Dnr1 mutations cause neurodegeneration in <i>Drosophila</i> by activating the innate immune response in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1752-60.	7.1	179
6	Neurogenetic Analysis of Potassium Currents in Drosophila: Synergistic Effects on Neuromuscular Transmission in Double Mutants. Journal of Neurogenetics, 1983, 1, 17-28.	1.4	174
7	The mlenapts RNA Helicase Mutation in Drosophila Results in a Splicing Catastrophe of the para Na + Channel Transcript in a Region of RNA Editing. Neuron, 2000, 25, 139-149.	8.1	170
8	NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration. Cell Reports, 2017, 19, 836-848.	6.4	155
9	Synaptic function modulated by changes in the ratio of synaptotagmin I and IV. Nature, 1999, 400, 757-760.	27.8	149
10	Nervous Wreck, an SH3 Adaptor Protein that Interacts with Wsp, Regulates Synaptic Growth in Drosophila. Neuron, 2004, 41, 521-534.	8.1	148
11	Nervous Wreck Interacts with Thickveins and the Endocytic Machinery to Attenuate Retrograde BMP Signaling during Synaptic Growth. Neuron, 2008, 58, 507-518.	8.1	146
12	Truncated RanGAP Encoded by the Segregation Distorter Locus of Drosophila. Science, 1999, 283, 1742-1745.	12.6	143
13	napts, a Mutation affecting sodium channel activity in Drosophila, Is an allele of mle a regulator of X chromosome transcription. Cell, 1991, 66, 949-959.	28.9	127
14	Expression of Multiple Transgenes from a Single Construct Using Viral 2A Peptides in Drosophila. PLoS ONE, 2014, 9, e100637.	2.5	126
15	A <i>Drosophila</i> model of closed head traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4152-9.	7.1	116
16	The <i>Drosophila erg</i> K ⁺ Channel Polypeptide Is Encoded by the Seizure Locus. Journal of Neuroscience, 1997, 17, 875-881.	3.6	106
17	Neural Dysfunction and Neurodegeneration in <i>Drosophila</i> Na ⁺ /K ⁺ ATPase Alpha Subunit Mutants. Journal of Neuroscience, 2003, 23, 1276-1286.	3.6	106
18	A Drosophila NSF mutant. Nature, 1995, 376, 25-25.	27.8	105

BARRY GANETZKY

#	Article	IF	CITATIONS
19	Transcellular spreading of huntingtin aggregates in the <i>Drosophila</i> brain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5427-33.	7.1	105
20	RNA Editing of the Drosophila <i>para</i> Na+ Channel Transcript: Evolutionary Conservation and Developmental Regulation. Genetics, 2000, 155, 1149-1160.	2.9	101
21	Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. ELife, 2015, 4, .	6.0	95
22	Metabolic Disruption in Drosophila Bang-Sensitive Seizure Mutants. Genetics, 2006, 173, 1357-1364.	2.9	89
23	Temperature-Sensitive Paralytic Mutants Are Enriched For Those Causing Neurodegeneration in Drosophila. Genetics, 2002, 161, 1197-1208.	2.9	84
24	GENETIC STUDIES OF MEMBRANE EXCITABILITY IN DROSOPHILA: LETHAL INTERACTION BETWEEN TWO TEMPERATURE-SENSITIVE PARALYTIC MUTATIONS. Genetics, 1984, 108, 897-911.	2.9	81
25	The Eag Family of K+ Channels in Drosophila and Mammals. Annals of the New York Academy of Sciences, 1999, 868, 356-369.	3.8	79
26	wasted away, a Drosophila mutation in triosephosphate isomerase, causes paralysis, neurodegeneration, and early death. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14987-14993.	7.1	70
27	Altered Synaptic Transmission inDrosophila HyperkineticMutants. Journal of Neurogenetics, 1989, 5, 215-228.	1.4	65
28	Yuichiro Hiraizumi and Forty Years of Segregation Distortion. Genetics, 1999, 152, 1-4.	2.9	61
29	ON THE COMPONENTS OF SEGREGATION DISTORTION IN <i>DROSOPHILA MELANOGASTER</i> . II. DELETION MAPPING AND DOSAGE ANALYSIS OF THE <i>SD</i> LOCUS. Genetics, 1983, 103, 659-673.	2.9	59
30	A neuropeptide signaling pathway regulates synaptic growth in <i>Drosophila</i> . Journal of Cell Biology, 2012, 196, 529-543.	5.2	58
31	The gut reaction to traumatic brain injury. Fly, 2015, 9, 68-74.	1.7	58
32	ON THE COMPONENTS OF SEGREGATION DISTORTION IN <i>DROSOPHILA MELANOGASTER</i> . III. NATURE OF ENHANCER OF SD. Genetics, 1984, 107, 423-434.	2.9	48
33	Conduction in the Giant Nerve Fiber Pathway in Temperature-Sensitive Paralytic Mutants of Drosophila. Journal of Neurogenetics, 1990, 6, 207-219.	1.4	45
34	Age and Diet Affect Genetically Separable Secondary Injuries that Cause Acute Mortality Following Traumatic Brain Injury in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2016, 6, 4151-4166.	1.8	45
35	Neurogenetic Analysis ofDrosophilaMutations Affecting Sodium Channels: Synergistic Effects on Viability and Nerve Conduction in Double Mutants Involvingtip-E. Journal of Neurogenetics, 1986, 3, 19-31.	1.4	40
36	Identification and Characterization of Inebriated, a Gene Affecting Neuronal Excitability in Drosophila. Journal of Neurogenetics, 1992, 8, 157-172.	1.4	38

BARRY GANETZKY

#	Article	IF	CITATIONS
37	Drosulfakinin activates CCKLR-17D1 and promotes larval locomotion and escape response in Drosophila. Fly, 2012, 6, 290-297.	1.7	38
38	Neuropathology in Drosophila Membrane Excitability Mutants. Genetics, 2006, 172, 1031-1042.	2.9	36
39	Genetic variability affects absolute and relative potencies and kinetics of the anesthetics isoflurane and sevoflurane in Drosophila melanogaster. Scientific Reports, 2018, 8, 2348.	3.3	33
40	An Improved Method for Accurate and Rapid Measurement of Flight Performance in Drosophila . Journal of Visualized Experiments, 2014, , e51223.	0.3	32
41	A Method to Inflict Closed Head Traumatic Brain Injury in Drosophila . Journal of Visualized Experiments, 2015, , e52905.	0.3	32
42	Mito-Nuclear Interactions Affecting Lifespan and Neurodegeneration in a <i>Drosophila</i> Model of Leigh Syndrome. Genetics, 2018, 208, 1535-1552.	2.9	30
43	Neuropathology in Drosophila Mutants With Increased Seizure Susceptibility. Genetics, 2008, 178, 947-956.	2.9	29
44	Analysis of Synaptic Growth and Function in <i>Drosophila</i> with an Extended Larval Stage. Journal of Neuroscience, 2012, 32, 13776-13786.	3.6	27
45	DETECTION OF <i>Rsp</i> AND MODIFIER VARIATION IN THE MEIOTIC DRIVE SYSTEM <i>SEGREGATION DISTORTER</i> (<i>SD</i>) OF <i>DROSOPHILA MELANOGASTER</i> . Genetics, 1986, 114, 183-202.	2.9	27
46	A <i>Drosophila</i> model to investigate the neurotoxic side effects of radiation exposure. DMM Disease Models and Mechanisms, 2015, 8, 669-677.	2.4	26
47	Loss of the Antimicrobial Peptide Metchnikowin Protects Against Traumatic Brain Injury Outcomes in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2020, 10, 3109-3119.	1.8	23
48	Persistent Activation of the Innate Immune Response in Adult <i>Drosophila</i> Following Radiation Exposure During Larval Development. G3: Genes, Genomes, Genetics, 2015, 5, 2299-2306.	1.8	20
49	A mutation in <i>Drosophila</i> Aldolase Causes Temperature-Sensitive Paralysis, Shortened Lifespan, and Neurodegeneration. Journal of Neurogenetics, 2012, 26, 317-327.	1.4	18
50	Nibbling away at synaptic development. Autophagy, 2010, 6, 168-169.	9.1	17
51	A Neuroprotective Function of NSF1 Sustains Autophagy and Lysosomal Trafficking in <i>Drosophila</i> . Genetics, 2015, 199, 511-522.	2.9	17
52	Survival Following Traumatic Brain Injury in <i>Drosophila</i> Is Increased by Heterozygosity for a Mutation of the NF-№B Innate Immune Response Transcription Factor Relish. Genetics, 2020, 216, 1117-1136.	2.9	16
53	Neurodegeneration and locomotor dysfunction in Drosophila <i>scarlet</i> mutants. Journal of Cell Science, 2018, 131, .	2.0	15
54	A Drosophila behavioral mutant, down and out (dao), is defective in an essential regulator of Erg potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5617-5621.	7.1	12

BARRY GANETZKY

#	Article	IF	CITATIONS
55	Identification of Mob2, a Novel Regulator of Larval Neuromuscular Junction Morphology, in Natural Populations of <i>Drosophila melanogaster</i> . Genetics, 2013, 195, 915-926.	2.9	12
56	The Centenary of <i>GENETICS </i> : Bridges to the Future. Genetics, 2016, 202, 15-23.	2.9	12
57	Developmental arrest of <i>Drosophila</i> larvae elicits presynaptic depression and enables prolonged studies of neurodegeneration. Development (Cambridge), 2020, 147, .	2.5	10
58	Non-cell autonomous cell death caused by transmission of Huntingtin aggregates in Drosophila. Fly, 2015, 9, 107-109.	1.7	9
59	Mitochondrial Complex I Mutations Predispose <i>Drosophila</i> to Isoflurane Neurotoxicity. Anesthesiology, 2020, 133, 839-851.	2.5	9
60	Alfred Sturtevant and George Beadle Untangle Inversions. Genetics, 2016, 203, 1001-1003.	2.9	7
61	A Novel Mutation in Brain Tumor Causes Both Neural Over-Proliferation and Neurodegeneration in Adult Drosophila. G3: Genes, Genomes, Genetics, 2018, 8, 3331-3346.	1.8	6
62	Non-mammalian Animal Models Offer New Perspectives on the Treatment of TBI. Current Physical Medicine and Rehabilitation Reports, 2016, 4, 1-4.	0.8	5
63	Ketogenic diet reduces early mortality following traumatic brain injury in Drosophila via the PPARÎ ³ ortholog Eip75B. PLoS ONE, 2021, 16, e0258873.	2.5	2
64	Beta-blockers reduce intestinal permeability and early mortality following traumatic brain injury in. MicroPublication Biology, 2021, 2021, .	0.1	2
65	Mutations affecting sodium channels inDrosophila. BioEssays, 1986, 5, 11-14.	2.5	1
66	Cysteine strings, calcium channels and synaptic transmission. BioEssays, 1994, 16, 461-463.	2.5	1
67	HERG Sequence Correction. Science, 1996, 272, 1087-1087.	12.6	1
68	Remembering Obaid Siddiqi, a pioneer in the study of temperature-sensitive paralytic mutants in Drosophila. Journal of Biosciences, 2014, 39, 547-553.	1.1	0
69	Effects of blunt force injuries in third-instar larvae persist through metamorphosis and reduce adult lifespan. MicroPublication Biology, 2021, 2021, .	0.1	0