Reinis Vilskersts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1999985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacological Reviews, 2022, 74, 506-551.	16.0	106
2	Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Toxicology Letters, 2017, 267, 32-38.	0.8	83
3	Long-chain acylcarnitines determine ischaemia/reperfusion-induced damage in heart mitochondria. Biochemical Journal, 2016, 473, 1191-1202.	3.7	77
4	Mildronate, an Inhibitor of Carnitine Biosynthesis, Induces an Increase in Gamma-Butyrobetaine Contents and Cardioprotection in Isolated Rat Heart Infarction. Journal of Cardiovascular Pharmacology, 2006, 48, 314-319.	1.9	71
5	Pharmacological effects of meldonium: Biochemical mechanisms and biomarkers of cardiometabolic activity. Pharmacological Research, 2016, 113, 771-780.	7.1	68
6	Protective effects of mildronate in an experimental model of type 2 diabetes in Gotoâ€Kakizaki rats. British Journal of Pharmacology, 2009, 157, 1549-1556.	5.4	63
7	Mildronate decreases carnitine availability and up-regulates glucose uptake and related gene expression in the mouse heart. Life Sciences, 2008, 83, 613-619.	4.3	60
8	The heart is better protected against myocardial infarction in the fed state compared to the fasted state. Metabolism: Clinical and Experimental, 2014, 63, 127-136.	3.4	56
9	The Cardioprotective Effect of Mildronate is Diminished After Co-Treatment With <scp>I</scp> -Carnitine. Journal of Cardiovascular Pharmacology and Therapeutics, 2012, 17, 215-222.	2.0	44
10	The cognitionâ€enhancing activity of <scp>E1R</scp> , a novel positive allosteric modulator of sigmaâ€1 receptors. British Journal of Pharmacology, 2014, 171, 761-771.	5.4	31
11	Effects of Longâ€Term Mildronate Treatment on Cardiac and Liver Functions in Rats. Basic and Clinical Pharmacology and Toxicology, 2009, 105, 387-394.	2.5	27
12	Mildronate, a Regulator of Energy Metabolism, Reduces Atherosclerosis in apoE/LDLR ^{–/–} Mice. Pharmacology, 2009, 83, 287-293.	2.2	27
13	Myocardial Infarct Size-Limiting and Anti-Arrhythmic Effects of Mildronate Orotate in the Rat Heart. Cardiovascular Drugs and Therapy, 2009, 23, 281-288.	2.6	25
14	Acute and longâ€ŧerm administration of palmitoylcarnitine induces muscleâ€specific insulin resistance in mice. BioFactors, 2017, 43, 718-730.	5.4	25
15	Inhibition of Lâ€carnitine biosynthesis and transport by methylâ€Î³â€butyrobetaine decreases fatty acid oxidation and protects against myocardial infarction. British Journal of Pharmacology, 2015, 172, 1319-1332.	5.4	24
16	Microbiota-Derived Metabolite Trimethylamine N-Oxide Protects Mitochondrial Energy Metabolism and Cardiac Functionality in a Rat Model of Right Ventricle Heart Failure. Frontiers in Cell and Developmental Biology, 2020, 8, 622741.	3.7	23
17	The anti-inflammatory and antinociceptive effects of NF-κB inhibitory guanidine derivative ME10092. International Immunopharmacology, 2010, 10, 455-460.	3.8	22
18	Delivery Systems for Birch-bark Triterpenoids and their Derivatives in Anticancer Research. Current Medicinal Chemistry, 2020, 27, 1308-1336.	2.4	20

REINIS VILSKERSTS

#	Article	IF	CITATIONS
19	Metabolomic studies of experimental diabetic urine samples by 1H NMR spectroscopy and LC/MS method. Chemometrics and Intelligent Laboratory Systems, 2009, 97, 11-17.	3.5	19
20	Administration of L-carnitine and mildronate improves endothelial function and decreases mortality in hypertensive Dahl rats. Pharmacological Reports, 2011, 63, 752-762.	3.3	19
21	Functional Evaluation of THIQ, a Melanocortin 4 Receptor Agonist, in Models of Food Intake and Inflammation. Basic and Clinical Pharmacology and Toxicology, 2007, 101, 416-420.	2.5	18
22	Synthesis and biological evaluation of 2-(5-methyl-4-phenyl-2-oxopyrrolidin-1-yl)-acetamide stereoisomers as novel positive allosteric modulators of sigma-1 receptor. Bioorganic and Medicinal Chemistry, 2013, 21, 2764-2771.	3.0	18
23	Glyoxalase 1 and glyoxalase 2 activities in blood and neuronal tissue samples from experimental animal models of obesity and type 2 diabetes mellitus. Journal of Physiological Sciences, 2012, 62, 469-478.	2.1	17
24	Mitochondrial Function in the Kidney and Heart, but Not the Brain, is Mainly Altered in an Experimental Model of Endotoxaemia. Shock, 2019, 52, e153-e162.	2.1	16
25	Selective inhibition of OCTN2 is more effective than inhibition of gamma-butyrobetaine dioxygenase to decrease the availability of l-carnitine and to reduce myocardial infarct size. Pharmacological Research, 2014, 85, 33-38.	7.1	15
26	beta-MSH inhibits brain inflammation via MC3/4 receptors and impaired NF-κB signaling. Journal of Neuroimmunology, 2005, 169, 13-19.	2.3	14
27	Benzo[b]thiophen-3(2H)-one 1,1-dioxide—a versatile reagent in the synthesis of spiroheterocycles. Tetrahedron, 2008, 64, 9947-9952.	1.9	13
28	Methyl-Î ³ -butyrobetaine decreases levels of acylcarnitines and attenuates the development of atherosclerosis. Vascular Pharmacology, 2015, 72, 101-107.	2.1	13
29	Inhibition of CPT2 exacerbates cardiac dysfunction and inflammation in experimental endotoxaemia. Journal of Cellular and Molecular Medicine, 2020, 24, 11903-11911.	3.6	11
30	Sulfonyl Group Dance: A Tool for the Synthesis of 6-Azido-2-sulfonylpurine Derivatives. Journal of Organic Chemistry, 2020, 85, 4753-4771.	3.2	11
31	Elevated vascular γâ€butyrobetaine levels attenuate the development of high glucoseâ€induced endothelial dysfunction. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 518-524.	1.9	9
32	Magnesium nitrate attenuates blood pressure rise in SHR rats. Magnesium Research, 2014, 27, 16-24.	0.5	8
33	Low cardiac content of long-chain acylcarnitines in TMLHE knockout mice prevents ischaemia-reperfusion-induced mitochondrial and cardiac damage. Free Radical Biology and Medicine, 2021, 177, 370-380.	2.9	8
34	Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. International Journal of Molecular Sciences, 2022, 23, 45.	4.1	4
35	Rats with congenital hydronephrosis show increased susceptibility to renal ischemiaâ€reperfusion injury. Physiological Reports, 2020, 8, e14638	1.7	2
36	4-Pyridinio-1,4-Dihydropyridines as Calcium Ion Transport Modulators: Antagonist, Agonist, and Dual Action. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	4.0	2

#	Article	IF	CITATIONS
37	Resveratrol Attenuates the Development of Sodium Hypochlorite-induced Endothelial Dysfunction. Natural Products Journal, 2017, 7, .	0.3	0