
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1998818/publications.pdf Version: 2024-02-01

SONC CUO

#	Article	IF	CITATIONS
1	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
2	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie, 2022, 134, .	2.0	5
3	Heavy-atom free organic photosensitizers for efficient hydrogen evolution with λÂ>Â600Ânm visible-light excitation. Applied Catalysis B: Environmental, 2022, 316, 121655.	20.2	3
4	Microenvironment Regulation of {Co ₄ ^{II} O ₄ } Cubane for Syngas Photosynthesis. Inorganic Chemistry, 2022, 61, 13058-13066.	4.0	3
5	Charge Transfer from Donor to Acceptor in Conjugated Microporous Polymer for Enhanced Photosensitization. Angewandte Chemie, 2021, 133, 22233-22240.	2.0	24
6	Charge Transfer from Donor to Acceptor in Conjugated Microporous Polymer for Enhanced Photosensitization. Angewandte Chemie - International Edition, 2021, 60, 22062-22069.	13.8	37
7	A Novel Phosphorescent Iridium(III) Complex Bearing Formamide for Quantitative Fluorine Anion Detection. Crystals, 2021, 11, 1190.	2.2	6
8	Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reuse of noble-metal photosensitizer during CO2 photoreduction. Chinese Journal of Catalysis, 2021, 42, 1790-1797.	14.0	20
9	Hot-electron leading-out strategy for constructing photostable HOF catalysts with outstanding H2 evolution activity. Applied Catalysis B: Environmental, 2021, 296, 120337.	20.2	28
10	Bidirectional sensitization in Ruthenium(II)-antenna dyad beyond energy flow of biological model for efficient photosynthesis. Dyes and Pigments, 2021, 196, 109811.	3.7	2
11	Feeding Carbonylation with CO ₂ via the Synergy of Single-Site/Nanocluster Catalysts in a Photosensitizing MOF. Journal of the American Chemical Society, 2021, 143, 20792-20801.	13.7	91
12	Synergistic Effect over Sub-nm Pt Nanocluster@MOFs Significantly Boosts Photo-oxidation of N-alkyl(iso)quinolinium Salts. IScience, 2020, 23, 100793.	4.1	16
13	Unveiling Single Atom Nucleation for Isolating Ultrafine fcc Ru Nanoclusters with Outstanding Dehydrogenation Activity. Advanced Energy Materials, 2020, 10, 2002138.	19.5	29
14	Rational design of type I photosensitizers based on Ru(<scp>ii</scp>) complexes for effective photodynamic therapy under hypoxia. Dalton Transactions, 2020, 49, 11192-11200.	3.3	23
15	Boosting Photocatalytic Activities for Organic Transformations through Merging Photocatalyst and Transition-Metal Catalyst in Flexible Polymers. ACS Catalysis, 2020, 10, 11758-11767.	11.2	38
16	Strong Visibleâ€Lightâ€Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis. Angewandte Chemie, 2020, 132, 13051-13057.	2.0	8
17	Improving photosensitization for photochemical CO2-to-CO conversion. National Science Review, 2020, 7, 1459-1467.	9.5	44
18	Strong Visibleâ€Lightâ€Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis. Angewandte Chemie - International Edition, 2020, 59, 12951-12957.	13.8	26

#	Article	IF	CITATIONS
19	Encapsulation of Single Iron Sites in a Metal–Porphyrin Framework for High-Performance Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2020, 59, 6301-6307.	4.0	57
20	A broadband and strong visible-light-absorbing photosensitizer boosts hydrogen evolution. Nature Communications, 2019, 10, 3155.	12.8	103
21	Achieving Dual Persistent Roomâ€Temperature Phosphorescence from Polycyclic Luminophores via Interâ€Intramolecular Charge Transfer. Advanced Optical Materials, 2019, 7, 1900511.	7.3	60
22	Electroluminochromic Materials and Devices Based on Metal Complexes. Chemistry - an Asian Journal, 2019, 14, 3791-3802.	3.3	18
23	Sensitizing Ru(II) polyimine redox center with strong light-harvesting coumarin antennas to mimic energy flow of biological model for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 253, 105-110.	20.2	22
24	Heavy atom-free Keto-di-coumarin as earth-abundant strong visible light-harvesting photosensitizer for efficient photocatalytic hydrogen evolution. Dyes and Pigments, 2019, 166, 84-91.	3.7	14
25	Photosensitizing single-site metalâ^'organic framework enabling visible-light-driven CO2 reduction for syngas production. Applied Catalysis B: Environmental, 2019, 245, 496-501.	20.2	119
26	Dinuclear Metal Synergistic Catalysis Boosts Photochemical CO ₂ â€ŧo O Conversion. Angewandte Chemie, 2018, 130, 16718-16723.	2.0	27
27	Dinuclear Metal Synergistic Catalysis Boosts Photochemical CO ₂ â€to O Conversion. Angewandte Chemie - International Edition, 2018, 57, 16480-16485.	13.8	165
28	Extended structure constructed from {Co7} cluster-containing sandwich-type polyoxometalate. Inorganic Chemistry Communication, 2018, 95, 117-121.	3.9	1
29	Robust and Long-Lived Excited State Ru(II) Polyimine Photosensitizers Boost Hydrogen Production. ACS Catalysis, 2018, 8, 8659-8670.	11.2	69
30	Achieving red/near-infrared mechanoresponsive luminescence turn-on: mechanically disturbed metastable nanostructures in organic solids. Chemical Communications, 2017, 53, 1309-1312.	4.1	45
31	Circularly Polarized Phosphorescent Electroluminescence from Chiral Cationic Iridium(III) Isocyanide Complexes. Advanced Optical Materials, 2017, 5, 1700359.	7.3	111
32	Highly Emissive Organic Singleâ€Molecule White Emitters by Engineering <i>o</i> arboraneâ€Based Luminophores. Angewandte Chemie, 2017, 129, 11528-11532.	2.0	44
33	Highly Emissive Organic Singleâ€Molecule White Emitters by Engineering <i>o</i> arboraneâ€Based Luminophores. Angewandte Chemie - International Edition, 2017, 56, 11370-11374.	13.8	190
34	Luminescent ion pairs with tunable emission colors for light-emitting devices and electrochromic switches. Chemical Science, 2017, 8, 348-360.	7.4	45
35	Facile Synthesis of Highly Efficient Lepidineâ€Based Phosphorescent Iridium(III) Complexes for Yellow and White Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 881-894.	14.9	217
36	A Mitochondriaâ€Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia. Angewandte Chemie, 2016, 128, 10101-10105.	2.0	77

#	Article	IF	CITATIONS
37	A Mitochondriaâ€Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia. Angewandte Chemie - International Edition, 2016, 55, 9947-9951.	13.8	422
38	A series of iridophosphors with tunable excited states for hypoxia monitoring via time-resolved luminescence microscopy. Journal of Materials Chemistry C, 2016, 4, 10638-10645.	5.5	17
39	A phosphorescent Ir(<scp>iii</scp>) complex with formamide for the luminescence determination of low-level water content in organic solvents. Journal of Materials Chemistry C, 2016, 4, 6110-6116.	5.5	31
40	Triplet–Triplet Energy Transfer Study in Hydrogen Bonding Systems. Chimia, 2015, 69, 524.	0.6	0
41	An Electrochromic Phosphorescent Iridium(III) Complex for Information Recording, Encryption, and Decryption. Advanced Optical Materials, 2015, 3, 368-375.	7.3	72
42	Highly Selective Detection of 2,4,6â€Trinitrophenol and Cu ²⁺ lons Based on a Fluorescent Cadmium–Pamoate Metal–Organic Framework. Chemistry - A European Journal, 2015, 21, 2029-2037.	3.3	207
43	Broadband Visible Light-Harvesting Naphthalenediimide (NDI) Triad: Study of the Intra-/Intermolecular Energy/Electron Transfer and the Triplet Excited State. Journal of Physical Chemistry A, 2015, 119, 4787-4799.	2.5	24
44	Bodipy–C ₆₀ triple hydrogen bonding assemblies as heavy atom-free triplet photosensitizers: preparation and study of the singlet/triplet energy transfer. Chemical Science, 2015, 6, 3724-3737.	7.4	41
45	BODIPY triads triplet photosensitizers enhanced with intramolecular resonance energy transfer (RET): broadband visible light absorption and application in photooxidation. Chemical Science, 2014, 5, 489-500.	7.4	116
46	Strongly emissive long-lived ³ IL excited state of coumarins in cyclometalated Ir(<scp>iii</scp>) complexes used as triplet photosensitizers and application in triplet–triplet annihilation upconversion. Dalton Transactions, 2014, 43, 1672-1683.	3.3	37
47	Broadband Visibleâ€Lightâ€Harvesting <i>trans</i> â€Bis(alkylphosphine) Platinum(II)â€Alkynyl Complexes with Singlet Energy Transfer between BODIPY and Naphthalene Diimide Ligands. Chemistry - A European Journal, 2014, 20, 14282-14295.	3.3	27
48	Photoredox catalytic organic reactions promoted with broadband visible light-absorbing Bodipy-iodo-aza-Bodipy triad photocatalyst. RSC Advances, 2014, 4, 36131-36139.	3.6	47
49	Porous material-immobilized iodo-Bodipy as an efficient photocatalyst for photoredox catalytic organic reaction to prepare pyrrolo[2,1-a]isoquinoline. Chemical Communications, 2013, 49, 8689.	4.1	102
50	Triplet photosensitizers: from molecular design to applications. Chemical Society Reviews, 2013, 42, 5323.	38.1	1,234
51	Bodipy Derivatives as Organic Triplet Photosensitizers for Aerobic Photoorganocatalytic Oxidative Coupling of Amines and Photooxidation of Dihydroxylnaphthalenes. Journal of Organic Chemistry, 2013, 78, 5627-5637.	3.2	175
52	Intramolecular RET Enhanced Visible Light-Absorbing Bodipy Organic Triplet Photosensitizers and Application in Photooxidation and Triplet–Triplet Annihilation Upconversion. Journal of the American Chemical Society, 2013, 135, 10566-10578.	13.7	211
53	Visible light-absorbing rhenium(<scp>i</scp>) tricarbonyl complexes as triplet photosensitizers in photooxidation and triplet–triplet annihilation upconversion. Dalton Transactions, 2013, 42, 2062-2074.	3.3	73
54	Green light-excitable naphthalenediimide acetylide-containing cyclometalated Ir(iii) complex with long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion. Dalton Transactions, 2013, 42, 6478.	3.3	34

#	Article	IF	CITATIONS
55	Visible light-harvesting naphthalenediimide (NDI)-C60 dyads as heavy-atom-free organic triplet photosensitizers for triplet–triplet annihilation based upconversion. Dyes and Pigments, 2013, 96, 449-458.	3.7	44
56	Light-Harvesting Fullerene Dyads as Organic Triplet Photosensitizers for Triplet–Triplet Annihilation Upconversions. Journal of Organic Chemistry, 2012, 77, 5305-5312.	3.2	177
57	Room-Temperature Long-Lived Triplet Excited States of Naphthalenediimides and Their Applications as Organic Triplet Photosensitizers for Photooxidation and Triplet–Triplet Annihilation Upconversions. Journal of Organic Chemistry, 2012, 77, 3933-3943.	3.2	99
58	Visible light-harvesting cyclometalated Ir(iii) complexes as triplet photosensitizers for triplet–triplet annihilation based upconversion. Dalton Transactions, 2012, 41, 10680.	3.3	47