Song Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1998818/publications.pdf

Version: 2024-02-01

58 papers	5,073 citations	117625 34 h-index	58 g-index
60	60	60	6131 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Triplet photosensitizers: from molecular design to applications. Chemical Society Reviews, 2013, 42, 5323.	38.1	1,234
2	A Mitochondriaâ€Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia. Angewandte Chemie - International Edition, 2016, 55, 9947-9951.	13.8	422
3	Facile Synthesis of Highly Efficient Lepidineâ€Based Phosphorescent Iridium(III) Complexes for Yellow and White Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 881-894.	14.9	217
4	Intramolecular RET Enhanced Visible Light-Absorbing Bodipy Organic Triplet Photosensitizers and Application in Photooxidation and Triplet–Triplet Annihilation Upconversion. Journal of the American Chemical Society, 2013, 135, 10566-10578.	13.7	211
5	Highly Selective Detection of 2,4,6â€Trinitrophenol and Cu ²⁺ lons Based on a Fluorescent Cadmium–Pamoate Metal–Organic Framework. Chemistry - A European Journal, 2015, 21, 2029-2037.	3.3	207
6	Highly Emissive Organic Singleâ€Molecule White Emitters by Engineering <i>o</i> àâ€Carboraneâ€Based Luminophores. Angewandte Chemie - International Edition, 2017, 56, 11370-11374.	13.8	190
7	Light-Harvesting Fullerene Dyads as Organic Triplet Photosensitizers for Triplet–Triplet Annihilation Upconversions. Journal of Organic Chemistry, 2012, 77, 5305-5312.	3.2	177
8	Bodipy Derivatives as Organic Triplet Photosensitizers for Aerobic Photoorganocatalytic Oxidative Coupling of Amines and Photooxidation of Dihydroxylnaphthalenes. Journal of Organic Chemistry, 2013, 78, 5627-5637.	3.2	175
9	Dinuclear Metal Synergistic Catalysis Boosts Photochemical CO ₂ â€to O Conversion. Angewandte Chemie - International Edition, 2018, 57, 16480-16485.	13.8	165
10	Photosensitizing single-site metalâ^'organic framework enabling visible-light-driven CO2 reduction for syngas production. Applied Catalysis B: Environmental, 2019, 245, 496-501.	20.2	119
11	BODIPY triads triplet photosensitizers enhanced with intramolecular resonance energy transfer (RET): broadband visible light absorption and application in photooxidation. Chemical Science, 2014, 5, 489-500.	7.4	116
12	Circularly Polarized Phosphorescent Electroluminescence from Chiral Cationic Iridium(III) Isocyanide Complexes. Advanced Optical Materials, 2017, 5, 1700359.	7.3	111
13	A broadband and strong visible-light-absorbing photosensitizer boosts hydrogen evolution. Nature Communications, 2019, 10, 3155.	12.8	103
14	Porous material-immobilized iodo-Bodipy as an efficient photocatalyst for photoredox catalytic organic reaction to prepare pyrrolo[2,1-a]isoquinoline. Chemical Communications, 2013, 49, 8689.	4.1	102
15	Room-Temperature Long-Lived Triplet Excited States of Naphthalenediimides and Their Applications as Organic Triplet Photosensitizers for Photooxidation and Triplet–Triplet Annihilation Upconversions. Journal of Organic Chemistry, 2012, 77, 3933-3943.	3.2	99
16	Feeding Carbonylation with CO ₂ via the Synergy of Single-Site/Nanocluster Catalysts in a Photosensitizing MOF. Journal of the American Chemical Society, 2021, 143, 20792-20801.	13.7	91
17	A Mitochondria‶argeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia. Angewandte Chemie, 2016, 128, 10101-10105.	2.0	77
18	Visible light-absorbing rhenium(<scp>i</scp>) tricarbonyl complexes as triplet photosensitizers in photooxidation and triplet–triplet annihilation upconversion. Dalton Transactions, 2013, 42, 2062-2074.	3.3	73

#	Article	IF	CITATIONS
19	An Electrochromic Phosphorescent Iridium(III) Complex for Information Recording, Encryption, and Decryption. Advanced Optical Materials, 2015, 3, 368-375.	7.3	72
20	Robust and Long-Lived Excited State Ru(II) Polyimine Photosensitizers Boost Hydrogen Production. ACS Catalysis, 2018, 8, 8659-8670.	11.2	69
21	Achieving Dual Persistent Roomâ€Temperature Phosphorescence from Polycyclic Luminophores via Interâ€Intramolecular Charge Transfer. Advanced Optical Materials, 2019, 7, 1900511.	7.3	60
22	Encapsulation of Single Iron Sites in a Metal–Porphyrin Framework for High-Performance Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2020, 59, 6301-6307.	4.0	57
23	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
24	Visible light-harvesting cyclometalated Ir(iii) complexes as triplet photosensitizers for triplet–triplet annihilation based upconversion. Dalton Transactions, 2012, 41, 10680.	3.3	47
25	Photoredox catalytic organic reactions promoted with broadband visible light-absorbing Bodipy-iodo-aza-Bodipy triad photocatalyst. RSC Advances, 2014, 4, 36131-36139.	3.6	47
26	Achieving red/near-infrared mechanoresponsive luminescence turn-on: mechanically disturbed metastable nanostructures in organic solids. Chemical Communications, 2017, 53, 1309-1312.	4.1	45
27	Luminescent ion pairs with tunable emission colors for light-emitting devices and electrochromic switches. Chemical Science, 2017, 8, 348-360.	7.4	45
28	Visible light-harvesting naphthalenediimide (NDI)-C60 dyads as heavy-atom-free organic triplet photosensitizers for triplet–triplet annihilation based upconversion. Dyes and Pigments, 2013, 96, 449-458.	3.7	44
29	Highly Emissive Organic Singleâ€Molecule White Emitters by Engineering <i>o</i> àê€arboraneâ€Based Luminophores. Angewandte Chemie, 2017, 129, 11528-11532.	2.0	44
30	Improving photosensitization for photochemical CO2-to-CO conversion. National Science Review, 2020, 7, 1459-1467.	9.5	44
31	Bodipy–C ₆₀ triple hydrogen bonding assemblies as heavy atom-free triplet photosensitizers: preparation and study of the singlet/triplet energy transfer. Chemical Science, 2015, 6, 3724-3737.	7.4	41
32	Boosting Photocatalytic Activities for Organic Transformations through Merging Photocatalyst and Transition-Metal Catalyst in Flexible Polymers. ACS Catalysis, 2020, 10, 11758-11767.	11.2	38
33	Strongly emissive long-lived ³ IL excited state of coumarins in cyclometalated Ir(<scp>iii</scp>) complexes used as triplet photosensitizers and application in triplet–triplet annihilation upconversion. Dalton Transactions, 2014, 43, 1672-1683.	3.3	37
34	Charge Transfer from Donor to Acceptor in Conjugated Microporous Polymer for Enhanced Photosensitization. Angewandte Chemie - International Edition, 2021, 60, 22062-22069.	13.8	37
35	Green light-excitable naphthalenediimide acetylide-containing cyclometalated Ir(iii) complex with long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion. Dalton Transactions, 2013, 42, 6478.	3.3	34
36	A phosphorescent Ir(<scp>iii</scp>) complex with formamide for the luminescence determination of low-level water content in organic solvents. Journal of Materials Chemistry C, 2016, 4, 6110-6116.	5.5	31

#	Article	IF	CITATIONS
37	Unveiling Single Atom Nucleation for Isolating Ultrafine fcc Ru Nanoclusters with Outstanding Dehydrogenation Activity. Advanced Energy Materials, 2020, 10, 2002138.	19.5	29
38	Hot-electron leading-out strategy for constructing photostable HOF catalysts with outstanding H2 evolution activity. Applied Catalysis B: Environmental, 2021, 296, 120337.	20.2	28
39	Broadband Visibleâ€Lightâ€Harvesting <i>trans</i> à€Bis(alkylphosphine) Platinum(II)â€Alkynyl Complexes with Singlet Energy Transfer between BODIPY and Naphthalene Diimide Ligands. Chemistry - A European Journal, 2014, 20, 14282-14295.	3.3	27
40	Dinuclear Metal Synergistic Catalysis Boosts Photochemical CO ₂ â€to O Conversion. Angewandte Chemie, 2018, 130, 16718-16723.	2.0	27
41	Strong Visibleâ€Lightâ€Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis. Angewandte Chemie - International Edition, 2020, 59, 12951-12957.	13.8	26
42	Broadband Visible Light-Harvesting Naphthalenediimide (NDI) Triad: Study of the Intra-/Intermolecular Energy/Electron Transfer and the Triplet Excited State. Journal of Physical Chemistry A, 2015, 119, 4787-4799.	2.5	24
43	Charge Transfer from Donor to Acceptor in Conjugated Microporous Polymer for Enhanced Photosensitization. Angewandte Chemie, 2021, 133, 22233-22240.	2.0	24
44	Rational design of type I photosensitizers based on Ru(<scp>ii</scp>) complexes for effective photodynamic therapy under hypoxia. Dalton Transactions, 2020, 49, 11192-11200.	3.3	23
45	Sensitizing Ru(II) polyimine redox center with strong light-harvesting coumarin antennas to mimic energy flow of biological model for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 253, 105-110.	20.2	22
46	Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reuse of noble-metal photosensitizer during CO2 photoreduction. Chinese Journal of Catalysis, 2021, 42, 1790-1797.	14.0	20
47	Electroluminochromic Materials and Devices Based on Metal Complexes. Chemistry - an Asian Journal, 2019, 14, 3791-3802.	3.3	18
48	A series of iridophosphors with tunable excited states for hypoxia monitoring via time-resolved luminescence microscopy. Journal of Materials Chemistry C, 2016, 4, 10638-10645.	5 . 5	17
49	Synergistic Effect over Sub-nm Pt Nanocluster@MOFs Significantly Boosts Photo-oxidation of N-alkyl(iso)quinolinium Salts. IScience, 2020, 23, 100793.	4.1	16
50	Heavy atom-free Keto-di-coumarin as earth-abundant strong visible light-harvesting photosensitizer for efficient photocatalytic hydrogen evolution. Dyes and Pigments, 2019, 166, 84-91.	3.7	14
51	Strong Visibleâ€Lightâ€Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis. Angewandte Chemie, 2020, 132, 13051-13057.	2.0	8
52	A Novel Phosphorescent Iridium(III) Complex Bearing Formamide for Quantitative Fluorine Anion Detection. Crystals, 2021, 11, 1190.	2.2	6
53	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie, 2022, 134, .	2.0	5
54	Heavy-atom free organic photosensitizers for efficient hydrogen evolution with î»Â>Â600Ânm visible-light excitation. Applied Catalysis B: Environmental, 2022, 316, 121655.	20.2	3

Song Guo

#	Article	IF	CITATIONS
55	Microenvironment Regulation of {Co ₄ ^{II} O ₄ } Cubane for Syngas Photosynthesis. Inorganic Chemistry, 2022, 61, 13058-13066.	4.0	3
56	Bidirectional sensitization in Ruthenium(II)-antenna dyad beyond energy flow of biological model for efficient photosynthesis. Dyes and Pigments, 2021, 196, 109811.	3.7	2
57	Extended structure constructed from {Co7} cluster-containing sandwich-type polyoxometalate. Inorganic Chemistry Communication, 2018, 95, 117-121.	3.9	1
58	Triplet–Triplet Energy Transfer Study in Hydrogen Bonding Systems. Chimia, 2015, 69, 524.	0.6	0