
Robert Quimby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1998558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science, 2017, 358, 1559-1565.	12.6	559
2	SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like I· Carinae. Astrophysical Journal, 2007, 666, 1116-1128.	4.5	460
3	Hydrogen-poor superluminous stellar explosions. Nature, 2011, 474, 487-489.	27.8	440
4	Supernova 2007bi as a pair-instability explosion. Nature, 2009, 462, 624-627.	27.8	399
5	PTF 11kx: A Type la Supernova with a Symbiotic Nova Progenitor. Science, 2012, 337, 942-945.	12.6	282
6	HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2016, 830, 13.	4.5	170
7	iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova. Science, 2017, 356, 291-295.	12.6	168
8	SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND. Astrophysical Journal, 2010, 724, 1396-1401.	4.5	152
9	Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era. Publications of the Astronomical Society of the Pacific, 2012, 124, 1175-1196.	3.1	141
10	The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1031-1049.	4.4	136
11	THE EXTREME HOSTS OF EXTREME SUPERNOVAE. Astrophysical Journal, 2011, 727, 15.	4.5	132
12	The SED Machine: A Robotic Spectrograph for Fast Transient Classification. Publications of the Astronomical Society of the Pacific, 2018, 130, 035003.	3.1	132
13	The Palomar Transient Factory Photometric Calibration. Publications of the Astronomical Society of the Pacific, 2012, 124, 62-73.	3.1	124
14	DISCOVERY OF THE ULTRA-BRIGHT TYPE II-L SUPERNOVA 2008es. Astrophysical Journal, 2009, 690, 1313-1321.	4.5	120
15	The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy. Publications of the Astronomical Society of the Pacific, 2019, 131, 038003.	3.1	112
16	DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2015, 814, 108.	4.5	107
17	Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 860, 100.	4.5	105
18	Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 855, 2.	4.5	98

ROBERT QUIMBY

#	Article	IF	CITATIONS
19	THE HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA iPTF 13ajg AND ITS HOST GALAXY IN ABSORPTION AND EMISSION. Astrophysical Journal, 2014, 797, 24.	4.5	92
20	Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory. Astrophysical Journal, 2017, 848, 6.	4.5	91
21	TYPE I SUPERLUMINOUS SUPERNOVAE AS EXPLOSIONS INSIDE NON-HYDROGEN CIRCUMSTELLAR ENVELOPES. Astrophysical Journal, 2016, 829, 17.	4.5	79
22	A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT?. Astrophysical Journal, 2015, 798, 12.	4.5	78
23	Detection of the Gravitational Lens Magnifying a Type Ia Supernova. Science, 2014, 344, 396-399.	12.6	77
24	SN 2008am: A SUPER-LUMINOUS TYPE IIn SUPERNOVA. Astrophysical Journal, 2011, 729, 143.	4.5	68
25	The Palomar Transient Factory photometric catalog 1.0. Publications of the Astronomical Society of the Pacific, 2012, 124, 854-860.	3.1	63
26	INTERACTION-POWERED SUPERNOVAE: RISE-TIME VERSUS PEAK-LUMINOSITY CORRELATION AND THE SHOCK-BREAKOUT VELOCITY. Astrophysical Journal, 2014, 788, 154.	4.5	62
27	X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS. Astrophysical Journal, 2013, 763, 42.	4.5	61
28	ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE. Astrophysical Journal, 2017, 835, 58.	4.5	61
29	IPAC Image Processing and Data Archiving for the Palomar Transient Factory. Publications of the Astronomical Society of the Pacific, 0, , 000-000.	3.1	60
30	Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astronomy and Astrophysics, 2019, 621, A71.	5.1	59
31	Far-ultraviolet to Near-infrared Spectroscopy of a Nearby Hydrogen-poor Superluminous Supernova Gaia16apd. Astrophysical Journal, 2017, 840, 57.	4.5	57
32	M31N 2008-12a—THE REMARKABLE RECURRENT NOVA IN M31: PANCHROMATIC OBSERVATIONS OF THE 2015 ERUPTION. Astrophysical Journal, 2016, 833, 149.	5 4.5	50
33	Type IIn supernova light-curve properties measured from an untargeted survey sample. Astronomy and Astrophysics, 2020, 637, A73.	5.1	47
34	iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 824, L24.	8.3	46
35	PTF10ops - a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere. Monthly Notices of the Royal Astronomical Society, 2011, 418, 747-758.	4.4	43
36	A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. Nature Astronomy, 2018, 2, 887-895.	10.1	39

ROBERT QUIMBY

#	Article	IF	CITATIONS
37	M31N 2007-11d: A SLOWLY RISING, LUMINOUS NOVA IN M31. Astrophysical Journal, 2009, 690, 1148-1157.	4.5	36
38	PTF 10bzf (SN 2010ah): A BROAD-LINE IC SUPERNOVA DISCOVERED BY THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2011, 741, 76.	4.5	33
39	First Release of High-Redshift Superluminous Supernovae from the Subaru HIgh- <i>Z</i> SUpernova CAmpaign (SHIZUCA). I. Photometric Properties. Astrophysical Journal, Supplement Series, 2019, 241, 16.	7.7	30
40	The volumetric rate of normal type Ia supernovae in the local Universe discovered by the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2308-2320.	4.4	30
41	From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5142-5158.	4.4	30
42	TIC 172900988: A Transiting Circumbinary Planet Detected in One Sector of TESS Data. Astronomical Journal, 2021, 162, 234.	4.7	30
43	A Tale of Two Transients: GW 170104 and GRBÂ170105A. Astrophysical Journal, 2017, 845, 152.	4.5	29
44	Color Me Intrigued: The Discovery of iPTF 16fnm, an SN 2002cx–like Object. Astrophysical Journal, 2017, 848, 59.	4.5	28
45	Characterization of the Nucleus, Morphology, and Activity of Interstellar Comet 21/Borisov by Optical and Near-infrared GROWTH, Apache Point, IRTF, ZTF, and Keck Observations. Astronomical Journal, 2020, 160, 26.	4.7	28
46	Pulsational Pair-instability Model for Superluminous Supernova PTF12dam:Interaction and Radioactive Decay. Astrophysical Journal, 2017, 835, 266.	4.5	26
47	Far-UV HSTÂ Spectroscopy of an Unusual Hydrogen-poor Superluminous Supernova: SN2017egm. Astrophysical Journal, 2018, 858, 91.	4.5	26
48	Four (Super)luminous Supernovae from the First Months of the ZTF Survey. Astrophysical Journal, 2020, 901, 61.	4.5	25
49	iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger. Astrophysical Journal, 2017, 847, 54.	4.5	23
50	Orbital Foregrounds for Ultra-short Duration Transients. Astrophysical Journal Letters, 2020, 903, L27.	8.3	18
51	First Release of High-redshift Superluminous Supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). II. Spectroscopic Properties. Astrophysical Journal, Supplement Series, 2019, 241, 17.	7.7	17
52	SN 2010kd: Photometric and Spectroscopic Analysis of a Slow-decaying Superluminous Supernova. Astrophysical Journal, 2020, 892, 28.	4.5	15
53	Characterization of Temporarily Captured Minimoon 2020 CD ₃ by Keck Time-resolved Spectrophotometry. Astrophysical Journal Letters, 2020, 900, L45.	8.3	15
54	Initial Characterization of Active Transitioning Centaur, P/2019 LD ₂ (ATLAS), Using Hubble, Spitzer, ZTF, Keck, Apache Point Observatory, and GROWTH Visible and Infrared Imaging and Spectroscopy. Astronomical Journal, 2021, 161, 116.	4.7	13

Robert Quimby

#	Article	IF	CITATIONS
55	Magnification, dust and time-delay constraints from the first resolved strongly lensed Type Ia supernova iPTF16geu. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	12
56	The origin of the early-time optical emission of Swift GRB 080310â~ Monthly Notices of the Royal Astronomical Society, 2012, 421, 2692-2712.	4.4	11
57	Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4705-4717.	4.4	10
58	Time-series and Phase-curve Photometry of the Episodically Active Asteroid (6478) Gault in a Quiescent State Using APO, GROWTH, P200, and ZTF. Astrophysical Journal Letters, 2021, 911, L35.	8.3	10
59	Low-cost Access to the Deep, High-cadence Sky: the Argus Optical Array. Publications of the Astronomical Society of the Pacific, 2022, 134, 035003.	3.1	9
60	The Detailed Light-curve Evolution of V1674 Her (Nova Her 2021). Research Notes of the AAS, 2021, 5, 160.	0.7	8
61	HSC16aayt: A Slowly Evolving Interacting Transient Rising for More than 100 Days. Astrophysical Journal, 2019, 882, 70.	4.5	7
62	Discovering Supernovae at the Epoch of Reionization with the Nancy Grace Roman Space Telescope. Astrophysical Journal, 2022, 925, 211.	4.5	7
63	Constraints on the Rate of Supernovae Lasting for More Than a Year from Subaru/Hyper Suprime-Cam. Astrophysical Journal, 2021, 908, 249.	4.5	4
64	The SED Machine: A Spectrograph to Efficiently Classify Transient Events Discovered by PTF. Proceedings of the International Astronomical Union, 2012, 8, 281-282.	0.0	1
65	Radiation Hydrodynamical Models for TypeÂl Superluminous Supernovae. , 2017, , .		Ο