Toshiyuki Kawaharamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1998254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical Characterization of Gallium Oxide α and β Polymorph Thin-Films Grown on c-Plane Sapphire. Journal of Electronic Materials, 2021, 50, 2990-2998.	2.2	9
2	The effect of HCl on the $\hat{l}\pm$ -Ga2O3 thin films fabricated by third generation mist chemical vapor deposition. AlP Advances, 2021, 11, 045123.	1.3	7
3	The Quality Improvement of Yttrium Oxide Thin Films Grown at Low Temperature via the Thirdâ€Generation Mist Chemical Vapor Deposition Using Oxygenâ€Supporting Sources. Physica Status Solidi (B): Basic Research, 2021, 258, 2100105.	1.5	5
4	α -(AlxGa1â^'x)2O3 single-layer and heterostructure buffers for the growth of conductive Sn-doped α-Ga2O3 thin films via mist chemical vapor deposition. APL Materials, 2020, 8, .	5.1	15
5	Conductive Si-doped α-(AlxGa1â^'x)2O3 thin films with the bandgaps up to 6.22 eV. AIP Advances, 2020, 10, 115019.	1.3	13
6	Mist chemical vapor deposition study of 20 and 100 nm thick undoped ferroelectric hafnium oxide films on n+-Si(100) substrates. Japanese Journal of Applied Physics, 2019, 58, SLLB10.	1.5	2
7	Porosity-tuned thermal conductivity in thermoelectric Al-doped ZnO thin films grown by mist-chemical vapor deposition. Thin Solid Films, 2019, 685, 180-185.	1.8	38
8	Growth mechanism of zinc oxide thin film by mist chemical vapor deposition via the modulation of [H ₂ 0]/[Zn] ratios. Applied Physics Express, 2019, 12, 065505.	2.4	10
9	Composition control of Zn _{1-<i>x</i>} Mg <i>_x</i> O thin films grown using mist chemical vapor deposition. Japanese Journal of Applied Physics, 2019, 58, 035503.	1.5	10
10	Development of "Mist CVDâ€; Functional Thin Film Fabrication Techniques Utilizing Mist Flow. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2017, 68, 707-711.	0.2	0
11	Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow. Japanese Journal of Applied Physics, 2014, 53, 05FF08.	1.5	93
12	Growth and electrical properties of AlOx grown by mist chemical vapor deposition. AlP Advances, 2013, 3, .	1.3	30
13	Stoichiometry Control of ZnO Thin Film by Adjusting Working Gas Ratio during Radio Frequency Magnetron Sputtering. Journal of Materials, 2013, 2013, 1-6.	0.1	95
14	Fabrication of Silicon Oxide Thin Films by Mist Chemical Vapor Deposition Method from Polysilazane and Ozone as Sources. Japanese Journal of Applied Physics, 2012, 51, 090201.	1.5	10
15	Growth of Crystalline Zinc Oxide Thin Films by Fine-Channel-Mist Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2008, 47, 4669.	1.5	109
16	Low-Temperature Growth of ZnO Thin Films by Linear Source Ultrasonic Spray Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2007, 46, 6811-6813.	1.5	65
17	Linear-Source Ultrasonic Spray Chemical Vapor Deposition Method for Fabrication of ZnMgO Films and Ultraviolet Photodetectors. Japanese Journal of Applied Physics, 2006, 45, L857-L859.	1.5	87