
Lu Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1997937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stimulated Raman scattering imaging with small vibrational probes. , 2022, , 289-310.		3
2	Multicolor Photoactivatable Raman Probes for Subcellular Imaging and Tracking by Cyclopropenone Caging. Journal of the American Chemical Society, 2022, 144, 777-786.	13.7	29
3	Alkyne-Tagged Raman Probes for Local Environmental Sensing by Hydrogen–Deuterium Exchange. Journal of the American Chemical Society, 2022, 144, 8504-8514.	13.7	20
4	Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. , 2022, , .		0
5	Bringing Vibrational Imaging to Chemical Biology with Molecular Probes. ACS Chemical Biology, 2022, 17, 1621-1637.	3.4	18
6	High spatial-resolution imaging of label-free <i>in vivo</i> protein aggregates by VISTA. Analyst, The, 2021, 146, 4135-4145.	3.5	11
7	Toward photoswitchable electronic pre-resonance stimulated Raman probes. Journal of Chemical Physics, 2021, 154, 135102.	3.0	20
8	Super-resolution label-free volumetric vibrational imaging. Nature Communications, 2021, 12, 3648.	12.8	29
9	Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells. Nature Communications, 2020, 11, 4830.	12.8	88
10	Visualizing Subcellular Enrichment of Glycogen in Live Cancer Cells by Stimulated Raman Scattering. Analytical Chemistry, 2020, 92, 13182-13191.	6.5	28
11	Live-Cell Imaging and Quantification of PolyQ Aggregates by Stimulated Raman Scattering of Selective Deuterium Labeling. ACS Central Science, 2020, 6, 478-486.	11.3	50
12	Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6608-6617.	7.1	92
13	Stimulated Raman excited fluorescence spectroscopy and imaging. Nature Photonics, 2019, 13, 412-417.	31.4	71
14	Chemical imaging for Biomedicine. , 2019, , .		0
15	Supermultiplexed optical imaging and barcoding with engineered polyynes. Nature Methods, 2018, 15, 194-200.	19.0	268
16	Electronic Resonant Stimulated Raman Scattering Micro-Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 9218-9224.	2.6	30
17	Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nature Communications, 2018, 9, 2942.	12.8	138
18	Electronic Preresonance Stimulated Raman Scattering Microscopy. Journal of Physical Chemistry Letters, 2018, 9, 4294-4301.	4.6	81

Lu Wei

#	Article	IF	CITATIONS
19	Super-multiplex vibrational imaging. Nature, 2017, 544, 465-470.	27.8	374
20	Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering. Scientific Reports, 2016, 6, 39660.	3.3	60
21	Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes. Accounts of Chemical Research, 2016, 49, 1494-1502.	15.6	150
22	Optical Imaging of Vibrationally-Tagged Small molecules for Biomedicine. , 2016, , .		0
23	Vibrational Imaging of Glucose Uptake in Live Cells and Tissues by Stimulated Raman Scattering Microscopy. Biophysical Journal, 2015, 108, 480a.	0.5	0
24	Vibrational Imaging of Clucose Uptake Activity in Live Cells and Tissues by Stimulated Raman Scattering. Angewandte Chemie - International Edition, 2015, 54, 9821-9825.	13.8	131
25	Imaging Complex Protein Metabolism in Live Organisms by Stimulated Raman Scattering Microscopy with Isotope Labeling. ACS Chemical Biology, 2015, 10, 901-908.	3.4	106
26	Bioorthogonal vibrational imaging of dynamic metabolism in living organisms. , 2015, , .		0
27	Live ell Quantitative Imaging of Proteome Degradation by Stimulated Raman Scattering. Angewandte Chemie - International Edition, 2014, 53, 5596-5599.	13.8	70
28	Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging. Proceedings of SPIE, 2014, , .	0.8	0
29	Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nature Methods, 2014, 11, 410-412.	19.0	404
30	Live-cell vibrational imaging of choline metabolites by stimulated Raman scattering coupled with isotope-based metabolic labeling. Analyst, The, 2014, 139, 2312-2317.	3.5	71
31	Multicolor Live-Cell Chemical Imaging by Isotopically Edited Alkyne Vibrational Palette. Journal of the American Chemical Society, 2014, 136, 8027-8033.	13.7	137
32	Live ell Quantitative Imaging of Proteome Degradation by Stimulated Raman Scattering. Angewandte Chemie, 2014, 126, 5702-5705.	2.0	10
33	What can stimulated emission do for bioimaging?. Annals of the New York Academy of Sciences, 2013, 1293, 1-7.	3.8	1
34	Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11226-11231.	7.1	193
35	Frustrated FRET for high-contrast high-resolution two-photon imaging. Optics Express, 2013, 21, 14097.	3.4	10
36	Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores. Optics Express, 2012, 20, 18525.	3.4	24

Lu Wei

#	Article	IF	CITATIONS
37	Stimulated emission reduced fluorescence microscopy: a concept for extending the fundamental depth limit of two-photon fluorescence imaging. Biomedical Optics Express, 2012, 3, 1465.	2.9	21
38	Mapping protein-specific micro-environments in live cells by fluorescence lifetime imaging of a hybrid genetic-chemical molecular rotor tag. Chemical Communications, 2012, 48, 8694.	4.1	51
39	Pump-probe optical microscopy for imaging nonfluorescent chromophores. Analytical and Bioanalytical Chemistry, 2012, 403, 2197-2202.	3.7	30