
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1996918/publications.pdf Version: 2024-02-01

FUCENE A VACANOV

#	Article	IF	CITATIONS
1	Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 1998, 391, 678-682.	27.8	658
2	Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 1999, 400, 149-151.	27.8	536
3	Low-frequency temperature variations from a northern tree ring density network. Journal of Geophysical Research, 2001, 106, 2929-2941.	3.3	532
4	Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biology, 2000, 6, 84-115.	9.5	346
5	Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals. Holocene, 2002, 12, 737-757.	1.7	310
6	Trees tell of past climates: but are they speaking less clearly today?. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 65-73.	4.0	240
7	The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees - Structure and Function, 2003, 17, 61-69.	1.9	210
8	New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6966-6971.	7.1	192
9	Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees - Structure and Function, 2006, 20, 571-586.	1.9	139
10	Tree-ring width and density data around the Northern Hemisphere: Part 2, spatio-temporal variability and associated climate patterns. Holocene, 2002, 12, 759-789.	1.7	138
11	Tree rings and volcanic cooling. Nature Geoscience, 2012, 5, 836-837.	12.9	137
12	Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2269-2282.	4.0	128
13	A forward modeling approach to paleoclimatic interpretation of tree-ring data. Journal of Geophysical Research, 2006, 111, .	3.3	122
14	Twentieth-century summer warmth in northern Yakutia in a 600-year context. Holocene, 1999, 9, 629-634.	1.7	118
15	Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees - Structure and Function, 2006, 20, 735-746.	1.9	115
16	Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene, 2002, 12, 727-736.	1.7	113
17	Forward modeling of regional scale tree-ring patterns in the southeastern United States and the recent influence of summer drought. Geophysical Research Letters, 2006, 33, .	4.0	107
18	Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget. Doklady Earth Sciences, 2011, 441, 1678-1682.	0.7	97

#	Article	IF	CITATIONS
19	20th century treeâ€line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas, 2012, 41, 56-67.	2.4	91
20	Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north?. Oecologia, 2009, 161, 825-835.	2.0	83
21	How Well Understood Are the Processes that Create Dendroclimatic Records? A Mechanistic Model of the Climatic Control on Conifer Tree-Ring Growth Dynamics. Developments in Paleoenvironmental Research, 2011, , 37-75.	8.0	83
22	Temperatureâ€induced responses of xylem structure of <i>Larix sibirica</i> (Pinaceae) from the Russian Altay. American Journal of Botany, 2013, 100, 1332-1343.	1.7	82
23	Summer temperature in northeastern Siberia since 1642 reconstructed from tracheid dimensions and cell numbers of Larix cajanderi. Canadian Journal of Forest Research, 2003, 33, 1905-1914.	1.7	78
24	Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophysical Research Letters, 2002, 29, 7-1-7-4.	4.0	77
25	Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe. Oecologia, 2009, 161, 729-745.	2.0	75
26	Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Regional Environmental Change, 2017, 17, 1725-1737.	2.9	72
27	Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia, 2020, 64, 125757.	2.2	66
28	Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch treeâ€ring parameters and stable isotopes. Global Change Biology, 2010, 16, 1003-1018.	9.5	62
29	Variation of early summer and annual temperature in east Taymir and Putoran (Siberia) over the last two millennia inferred from tree rings. Journal of Geophysical Research, 2000, 105, 7317-7326.	3.3	60
30	Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia. Environmental Research Letters, 2013, 8, 035034.	5.2	59
31	lsotopic composition (<i>δ</i> ¹³ C, <i>δ</i> ¹⁸ O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods. Journal of Geophysical Research, 2008, 113, .	3.3	53
32	Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia. Oecologia, 2006, 147, 86-95.	2.0	45
33	Statistical and processâ€based modeling analyses of tree growth response to climate in semiâ€arid area of north central China: A case study of <i>Pinus tabulaeformis</i> . Journal of Geophysical Research, 2008, 113, .	3.3	44
34	How can the parameterization of a process-based model help us understand real tree-ring growth?. Trees - Structure and Function, 2019, 33, 345-357.	1.9	42
35	Separating the climatic signal from tree-ring width and maximum latewood density records. Trees - Structure and Function, 2006, 21, 37-44.	1.9	40
36	Modeled Tracheidograms Disclose Drought Influence on Pinus sylvestris Tree-Rings Structure From Siberian Forest-Steppe. Frontiers in Plant Science, 2018, 9, 1144.	3.6	40

#	Article	IF	CITATIONS
37	Twentieth century trends in tree ring stable isotopes (<i>δ</i> ¹³ C and) Tj ETQq1 1 0.784314 rgBT	Overlock	10 Tf 50 747 39
07	Journal of Geophysical Research, 2010, 115, .	0.0	07
38	Evidences of wider latewood in Pinus sylvestris from a forest-steppe of Southern Siberia. Dendrochronologia, 2018, 49, 1-8.	2.2	37
39	An interpreted language implementation of the Vaganov–Shashkin tree-ring proxy system model. Dendrochronologia, 2020, 60, 125677.	2.2	33
40	Tree-ring growth curves as sources of climatic information. Quaternary Research, 2004, 62, 126-133.	1.7	32
41	Pine and larch tracheids capture seasonal variations of climatic signal at moisture-limited sites. Trees - Structure and Function, 2019, 33, 227-242.	1.9	31
42	Ecological and conceptual consequences of Arctic pollution. Ecology Letters, 2020, 23, 1827-1837.	6.4	31
43	Forward Modeling Reveals Multidecadal Trends in Cambial Kinetics and Phenology at Treeline. Frontiers in Plant Science, 2021, 12, 613643.	3.6	28
44	Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Climate of the Past, 2019, 15, 685-700.	3.4	26
45	Response of Four Tree Species to Changing Climate in a Moisture-Limited Area of South Siberia. Forests, 2019, 10, 999.	2.1	23
46	Net primary production of forest ecosystems of Russia: A new estimate. Doklady Earth Sciences, 2008, 421, 1009-1012.	0.7	21
47	Application of eco-physiological models to the climatic interpretation of δ13C and δ18O measured in Siberian larch tree-rings. Dendrochronologia, 2016, 39, 51-59.	2.2	21
48	Competitive Strength Effect In the Climate Response of Scots Pine Radial Growth In South-Central Siberia Forest-Steppe. Tree-Ring Research, 2015, 71, 106-117.	0.6	20
49	A cluster of stratospheric volcanic eruptions in the AD 530s recorded in Siberian tree rings. Global and Planetary Change, 2014, 122, 140-150.	3.5	18
50	The effect of individual genetic heterozygosity on general homeostasis, heterosis and resilience in Siberian larch (Larix sibirica Ledeb.) using dendrochronology and microsatellite loci genotyping. Dendrochronologia, 2016, 38, 26-37.	2.2	18
51	Reliability and Integrity of Forest Sector Statistics—A Major Constraint to Effective Forest Policy in Russia. Sustainability, 2021, 13, 86.	3.2	18
52	Net ecosystem productivity and peat accumulation in a Siberian Aapa mire. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 531-536.	1.6	17
53	Constructing the tree-ring chronology and reconstructing summertime air temperatures in southern Altai for the last 1500 years. Geography and Natural Resources, 2012, 33, 200-207.	0.3	17
54	Climatic Response of Conifer Radial Growth in Forest-Steppes of South Siberia: Comparison of Three Approaches. Contemporary Problems of Ecology, 2018, 11, 366-376.	0.7	16

EUGENE A VAGANOV

#	Article	IF	CITATIONS
55	Siberian spruce tree ring anatomy: imprint of development processes and their high-temporal environmental regulation. Dendrochronologia, 2019, 53, 114-124.	2.2	16
56	Transformation of climatic response in radial increment of trees depending on topoecological conditions of their occurrence. Geography and Natural Resources, 2011, 32, 80-86.	0.3	15
57	Somaclonal variation of haploid in vitro tissue culture obtained from Siberian larch (Larix sibirica) Tj ETQq1 1 0.784 Biology - Plant, 2014, 50, 655-664.	1314 rgBT 2.1	/Overlock 15
58	Divergent growth trends and climatic response of Picea obovata along elevational gradient in Western Sayan mountains, Siberia. Journal of Mountain Science, 2018, 15, 2378-2397.	2.0	15
59	Extraction of the climatic signal for moisture from tree-ring chronologies of Altai-Sayan mountain forest-steppes. Contemporary Problems of Ecology, 2011, 4, 716-724.	0.7	14
60	Age-Effect on Intra-Annual δ13C-Variability within Scots Pine Tree-Rings from Central Siberia. Forests, 2018, 9, 364.	2.1	14
61	Recent atmospheric drying in Siberia is not unprecedented over the last 1,500Âyears. Scientific Reports, 2020, 10, 15024.	3.3	14
62	Trends In Elemental Concentrations of Tree Rings From the Siberian Arctic. Tree-Ring Research, 2016, 72, 67-77.	0.6	13
63	To which side are the scales swinging? Growth stability of Siberian larch under permanent moisture deficit with periodic droughts. Forest Ecology and Management, 2020, 459, 117841.	3.2	13
64	Climate change and tree growth in the Khakass-Minusinsk Depression (South Siberia) impacted by large water reservoirs. Scientific Reports, 2021, 11, 14266.	3.3	13
65	A Band Model of Cambium Development: Opportunities and Prospects. Forests, 2021, 12, 1361.	2.1	13
66	Changes in the anatomical structure of tree rings of the rootstock and scion in the heterografts of Siberian pine. Trees - Structure and Function, 2013, 27, 1621-1631.	1.9	12
67	What prevails in climatic response of Pinus sylvestris in-between its range limits in mountains: slope aspect or elevation?. International Journal of Biometeorology, 2020, 64, 333-344.	3.0	12
68	Elemental composition of tree rings: A new perspective in biogeochemistry. Doklady Biological Sciences, 2013, 453, 375-379.	0.6	11
69	AutoCellRow (ACR) – A new tool for the automatic quantification of cell radial files in conifer images. Dendrochronologia, 2020, 60, 125687.	2.2	11
70	Regional features of the radial growth of larch in north central Siberia according to millennial tree-ring chronologies. Russian Journal of Ecology, 2007, 38, 90-93.	0.9	10
71	Dendrochronology of Larch Trees Growing on Siberian Permafrost. Ecological Studies, 2010, , 347-363.	1.2	10

Energy and mass exchange and the productivity of main Siberian ecosystems (from Eddy covariance) Tj ETQq0 0 0 $\underset{10}{\text{rgBT}}$ /Overlock 10 Tf

#	Article	IF	CITATIONS
73	Spring arctic oscillation as a trigger of summer drought in Siberian subarctic over the past 1494Âyears. Scientific Reports, 2021, 11, 19010.	3.3	10
74	Die-off dynamics of Siberian larch under the impact of pollutants emitted by Norilsk enterprises. Contemporary Problems of Ecology, 2014, 7, 679-684.	0.7	9
75	Contribution of Xylem Anatomy to Tree-Ring Width of Two Larch Species in Permafrost and Non-Permafrost Zones of Siberia. Forests, 2020, 11, 1343.	2.1	9
76	lsometric scaling to model water transport in conifer tree rings across time and environments. Journal of Experimental Botany, 2021, 72, 2672-2685.	4.8	9
77	Small fluctuations in cell wall thickness in pine and spruce xylem: Signal from cambium?. PLoS ONE, 2020, 15, e0233106.	2.5	9
78	Assessment of the Contribution of Russian Forests to Climate Change Mitigation. Economy of Region, 2021, 17, 1096-1109.	1.0	9
79	Evidences of Different Drought Sensitivity in Xylem Cell Developmental Processes in South Siberia Scots Pines. Forests, 2020, 11, 1294.	2.1	8
80	Extreme climatic events in the Altai Republic according to dendrochronological data. Biology Bulletin, 2016, 43, 152-161.	0.5	7
81	reply: Constraints to growth of boreal forests. Nature, 2000, 405, 905-905.	27.8	6
82	Boreal Forests and the Environment: A Foreword. Mitigation and Adaptation Strategies for Global Change, 2006, 11, 1-4.	2.1	6
83	System analysis of weather fire danger in predicting large fires in Siberian forests. Izvestiya - Atmospheric and Oceanic Physics, 2011, 47, 1049-1056.	0.9	6
84	Warming induced changes in wood matter accumulation in tracheid walls of spruce. Journal of Mountain Science, 2020, 17, 16-30.	2.0	6
85	Tree Rings Reveal the Impact of Soil Temperature on Larch Growth in the Forest-Steppe of Siberia. Forests, 2021, 12, 1765.	2.1	6
86	Earlywood structure of evergreen conifers near forest line is habitat driven but latewood depends on species and seasons. Trees - Structure and Function, 2021, 35, 479-492.	1.9	5
87	An Overview on Dendrochronology and Quantitative Wood Anatomy Studies of Conifers in Southern Siberia (Russia). Progress in Botany Fortschritte Der Botanik, 2021, , 161-181.	0.3	5
88	Non-linear Response to Cell Number Revealed and Eliminated From Long-Term Tracheid Measurements of Scots Pine in Southern Siberia. Frontiers in Plant Science, 2021, 12, 719796.	3.6	5
89	495-Year Wood Anatomical Record of Siberian Stone Pine (Pinus sibirica Du Tour) as Climatic Proxy on the Timberline. Forests, 2022, 13, 247.	2.1	5
90	Siberia Integrated Regional Study: multidisciplinary investigations of the dynamic relationship between the Siberian environment and global climate change. Environmental Research Letters, 2010, 5, 015007.	5.2	4

#	Article	IF	CITATIONS
91	Sunshine as culprit: It induces early spring physiological drought in dark coniferous (Pinus sibirica) Tj ETQq1 1 0.7	84314 rgE	3T ₄ /Overlock
92	Prospects of Using Tree-Ring Earlywood and Latewood Width for Reconstruction of Crops Yield on Example of South Siberia. Forests, 2021, 12, 174.	2.1	4
93	Genetic and Environmental Effects Assessment in Scots Pine Provenances Planted in Central Siberia. Mitigation and Adaptation Strategies for Global Change, 2006, 11, 269-290.	2.1	3
94	Carbon budget of boreal forests in Middle Siberia. Doklady Earth Sciences, 2009, 425, 480-484.	0.7	3
95	Influence of climatic factors and reserve assimilates on the radial growth and carbon isotope composition in tree rings of deciduous and coniferous species. Contemporary Problems of Ecology, 2011, 4, 126-132.	0.7	3
96	Species-specific and Non-species-specific Elemental Trends in Tree Rings. Doklady Earth Sciences, 2021, 496, 96-99.	0.7	3
97	Tracheidogram's Classification as a New Potential Proxy in High-Resolution Dendroclimatic Reconstructions. Forests, 2022, 13, 970.	2.1	3
98	Dendroclimatological Evidence of Climate Changes Across Siberia. Advances in Global Change Research, 2010, , 101-114.	1.6	2
99	Energy and mass exchange and the productivity of main Siberian ecosystems (from Eddy covariance) Tj ETQq1 1 (570-578.).784314 0.5	rgBT /Overlo 2
100	Spatial classification of moisture-sensitive pine and larch tree-ring chronologies within Khakass–Minusinsk Depression, South Siberia. Trees - Structure and Function, 0, , 1.	1.9	2
101	RECONSTRUCTION OF EXTREME PALEOCLIMATIC EVENTS IN NORTHWESTERN SIBERIA USING ANCIENT WOOD FROM FORT NADYM. Archaeology, Ethnology and Anthropology of Eurasia, 2018, 46, 32-40.	0.2	2
102	Title is missing!. Russian Journal of Ecology, 2001, 32, 400-407.	0.9	1
103	Extreme climatic events in the Republic of Tuva according to tree-ring analysis. Contemporary Problems of Ecology, 2015, 8, 414-422.	0.7	1
104	Response of Temperature-limited Forests to Recent Moisture Changes Derived from Tree-ring Stable Carbon Isotopes. Russian Journal of Ecology, 2021, 52, 368-375.	0.9	1
105	Đ¡Đ¼Đ,Đ¶ĐµĐ½Đ,е Ñ€Đ,ÑĐºĐ¾Đ² ĐºĐ»Đ,Đ¼Đ°Ñ,Đ,Ñ‡ĐµÑĐºĐ,Ñ Đ,Đ·Đ¼ĐµĐ½ĐµĐ½Đ,Đ¹ Đ, Đ,Ñ Đ¿Đ¾	ŧÑлеĐ′	ÑÑ,Đ²Đ,ĐÌ
106	Scotch pine adaptation to climate changes. Doklady Biological Sciences, 2002, 385, 357-360.	0.6	0
107	European Tree Rings and Climate in the 16th Century. , 1999, , 151-168.		0
108	Reconstruction of Extreme Paleoclimatic Events in Northwestern Siberia Using Ancient Wood from Fort Nadym. Archaeology, Ethnology and Anthropology of Eurasia, 2018, 46, 32-40.	0.0	0