
Lary C Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1996028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebral AÎ ² deposition in an AÎ ² -precursor protein-transgenic rhesus monkey. Aging Brain, 2022, 2, 100044.	1.3	2
2	Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life. Nature Neuroscience, 2020, 23, 1580-1588.	14.8	53
3	Quantification of neurons in the hippocampal formation of chimpanzees: comparison to rhesus monkeys and humans. Brain Structure and Function, 2020, 225, 2521-2531.	2.3	9
4	Glial tauopathy: Neurons optional?. Journal of Experimental Medicine, 2020, 217, .	8.5	5
5	Aβ Plaques. Free Neuropathology, 2020, 1, .	3.0	21
6	Cerebral Amyloid Angiopathy: Similarity in African-Americans and Caucasians with Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 62, 1815-1826.	2.6	11
7	Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nature Neuroscience, 2018, 21, 1341-1349.	14.8	289
8	A standard model of Alzheimer's disease?. Prion, 2018, 12, 261-265.	1.8	20
9	Sabotage by the brain's supporting cells helps fuel neurodegeneration. Nature, 2018, 557, 499-500.	27.8	1
10	Prion-like mechanisms in Alzheimer disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 303-319.	1.8	42
11	The Exceptional Vulnerability of Humans to Alzheimer's Disease. Trends in Molecular Medicine, 2017, 23, 534-545.	6.7	74
12	Prion-like Protein Seeding and the Pathobiology of Alzheimer's Disease. , 2017, , 57-82.		0
13	Generation of Clickable Pittsburgh Compound B for the Detection and Capture of β-Amyloid in Alzheimer's Disease Brain. Bioconjugate Chemistry, 2017, 28, 2627-2637.	3.6	15
14	Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13018-13023.	7.1	170
15	Aβ seeding potency peaks in the early stages of cerebral βâ€amyloidosis. EMBO Reports, 2017, 18, 1536-1544.	4.5	38
16	AÎ ² seeds and prions: How close the fit?. Prion, 2017, 11, 215-225.	1.8	29
17	Amyloid-Related Imaging Abnormalities inÂan Aged Squirrel Monkey with Cerebral Amyloid Angiopathy. Journal of Alzheimer's Disease, 2017, 57, 519-530.	2.6	22
18	Proteopathic Strains and the Heterogeneity of Neurodegenerative Diseases. Annual Review of Genetics, 2016, 50, 329-346.	7.6	53

#	Article	IF	CITATIONS
19	What amyloid ligands can tell us about molecular polymorphism and disease. Neurobiology of Aging, 2016, 42, 205-212.	3.1	11
20	The Prion-Like Properties of Amyloid-β Assemblies: Implications for Alzheimer's Disease. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a024398.	6.2	71
21	Comparative pathobiology of β-amyloid and the unique susceptibility of humans to Alzheimer's disease. Neurobiology of Aging, 2016, 44, 185-196.	3.1	34
22	The Malignant Protein Puzzle. Cerebrum: the Dana Forum on Brain Science, 2016, 2016, .	0.1	0
23	Progression of Seedâ€Induced <scp>A</scp> β Deposition within the Limbic Connectome. Brain Pathology, 2015, 25, 743-752.	4.1	45
24	Neurodegenerative Diseases: Expanding the Prion Concept. Annual Review of Neuroscience, 2015, 38, 87-103.	10.7	278
25	Amyloid-β pathology induced in humans. Nature, 2015, 525, 193-194.	27.8	43
26	Persistence of AÎ ² seeds in APP null mouse brain. Nature Neuroscience, 2015, 18, 1559-1561.	14.8	51
27	Transport of cargo from periphery to brain by circulating monocytes. Brain Research, 2015, 1622, 328-338.	2.2	14
28	AÎ ² seeds resist inactivation by formaldehyde. Acta Neuropathologica, 2014, 128, 477-484.	7.7	58
29	A distinct subfraction of Aβ is responsible for the highâ€affinity Pittsburgh compound Bâ€binding site in Alzheimer's disease brain. Journal of Neurochemistry, 2014, 131, 356-368.	3.9	32
30	Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 2013, 501, 45-51.	27.8	1,331
31	Mechanisms of Protein Seeding in Neurodegenerative Diseases. JAMA Neurology, 2013, 70, 304.	9.0	195
32	S4-01-01: Seeded initiation and spread of aggregated beta-amyloid. , 2013, 9, P673-P673.		0
33	The Prion-Like Aspect of Alzheimer Pathology. Research and Perspectives in Alzheimer's Disease, 2013, , 61-69.	0.1	2
34	Context dependence of protein misfolding and structural strains in neurodegenerative diseases. Biopolymers, 2013, 100, 722-730.	2.4	13
35	Seeds of Dementia. Scientific American, 2013, 308, 52-57.	1.0	7
36	Cerebral amyloid angiopathy in an aged sooty mangabey (Cercocebus atys). Comparative Medicine, 2013, 63, 515-20.	1.0	4

#	Article	IF	CITATIONS
37	Prolonged Gaseous Hypothermia Prevents the Upregulation of Phagocytosis-Specific Protein Annexin 1 and Causes Low-Amplitude EEG Activity in the Aged Rat Brain after Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1632-1642.	4.3	59
38	Nonhuman Primate Models of Alzheimer-Like Cerebral Proteopathy. Current Pharmaceutical Design, 2012, 18, 1159-1169.	1.9	120
39	Corruption and Spread of Pathogenic Proteins in Neurodegenerative Diseases. Journal of Biological Chemistry, 2012, 287, 33109-33115.	3.4	63
40	Mitochondrial DNA polymorphisms specifically modify cerebral β-amyloid proteostasis. Acta Neuropathologica, 2012, 124, 199-208.	7.7	52
41	Exogenous seeding of cerebral βâ€amyloid deposition in βAPPâ€transgenic rats. Journal of Neurochemistry, 2012, 120, 660-666.	3.9	111
42	The presence of AÎ ² seeds, and not age per se, is critical to the initiation of AÎ ² deposition in the brain. Acta Neuropathologica, 2012, 123, 31-37.	7.7	91
43	Soluble Al² Seeds Are Potent Inducers of Cerebral l²-Amyloid Deposition. Journal of Neuroscience, 2011, 31, 14488-14495.	3.6	203
44	PIB binding in aged primate brain: Enrichment of high-affinity sites in humans with Alzheimer's disease. Neurobiology of Aging, 2011, 32, 223-234.	3.1	82
45	Amyloid by default. Nature Neuroscience, 2011, 14, 669-670.	14.8	28
46	Automated Detection of Amyloid-β-Related Cortical and Subcortical Signal Changes in a Transgenic Model of Alzheimer's Disease using High-Field MRI. Journal of Alzheimer's Disease, 2011, 23, 221-237.	2.6	28
47	Determination of Spatial and Temporal Distribution of Microglia by 230nm-High-Resolution, High-Throughput Automated Analysis Reveals Different Amyloid Plaque Populations in an APP/PS1 Mouse Model of Alzheimers Disease. Current Alzheimer Research, 2011, 8, 781-788.	1.4	30
48	Pathogenic protein seeding in alzheimer disease and other neurodegenerative disorders. Annals of Neurology, 2011, 70, 532-540.	5.3	536
49	The Role of the ATP-Binding Cassette Transporter P-Glycoprotein in the Transport of β-Amyloid Across the Blood-Brain Barrier. Current Pharmaceutical Design, 2011, 17, 2778-2786.	1.9	35
50	Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice. Journal of Clinical Investigation, 2011, 121, 3924-3931.	8.2	155
51	Deficient high-affinity binding of Pittsburgh compound B in a case of Alzheimer's disease. Acta Neuropathologica, 2010, 119, 221-233.	7.7	75
52	Days to criterion as an indicator of toxicity associated with human Alzheimer amyloidâ€Î² oligomers. Annals of Neurology, 2010, 68, 220-230.	5.3	123
53	SDS-PAGE/Immunoblot Detection of Aβ Multimers in Human Cortical Tissue Homogenates using Antigen-Epitope Retrieval. Journal of Visualized Experiments, 2010, , .	0.3	25
54	The Grandmother Effect and the Uniqueness of the Human Aging Phenotype. Gerontology, 2010, 56, 217-219.	2.8	7

#	Article	IF	CITATIONS
55	Peripherally Applied AÎ ² -Containing Inoculates Induce Cerebral Î ² -Amyloidosis. Science, 2010, 330, 980-982.	12.6	519
56	Mosaic aging. Medical Hypotheses, 2010, 74, 1048-1051.	1.5	34
57	Molecular polymorphism of Aβ in Alzheimer's disease. Neurobiology of Aging, 2010, 31, 542-548.	3.1	47
58	Ovarian aging in squirrel monkeys (Saimiri sciureus). Reproduction, 2009, 138, 793-799.	2.6	36
59	Induction of cerebral β-amyloidosis: Intracerebral versus systemic Aβ inoculation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12926-12931.	7.1	249
60	Alzheimer's disease and blood–brain barrier function—Why have anti-β-amyloid therapies failed to prevent dementia progression?. Neuroscience and Biobehavioral Reviews, 2009, 33, 1099-1108.	6.1	66
61	The synthesis and structure–activity relationship of substituted N-phenyl anthranilic acid analogs as amyloid aggregation inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 654-657.	2.2	45
62	Tauopathy with paired helical filaments in an aged chimpanzee. Journal of Comparative Neurology, 2008, 509, 259-270.	1.6	129
63	Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer's disease: Transgene and endogenous APP genes are regulated tissue-specifically. BMC Neuroscience, 2008, 9, 28.	1.9	65
64	Long-term hypothermia reduces infarct volume in aged rats after focal ischemia. Neuroscience Letters, 2008, 438, 180-185.	2.1	106
65	Clinico-Pathologic Function of Cerebral ABC Transporters – Implications for the Pathogenesis of Alzheimers Disease. Current Alzheimer Research, 2008, 5, 396-405.	1.4	49
66	Diversity of Abeta deposits in the aged brain: a window on molecular heterogeneity?. Romanian Journal of Morphology and Embryology, 2008, 49, 5-11.	0.8	14
67	The Response of the Aged Brain to Stroke: Too Much, Too Soon?. Current Neurovascular Research, 2007, 4, 216-227.	1.1	126
68	Depletion of Ovarian Follicles with Age in Chimpanzees: Similarities to Humans1. Biology of Reproduction, 2007, 77, 247-251.	2.7	66
69	MDR1â€Pâ€Glycoprotein (ABCB1) Mediates Transport of Alzheimer's Amyloidâ€Î² Peptides—Implications fo Mechanisms of Aβ Clearance at the Blood–Brain Barrier. Brain Pathology, 2007, 17, 347-353.	or the 4.1	216
70	Accelerated infarct development, cytogenesis and apoptosis following transient cerebral ischemia in aged rats. Acta Neuropathologica, 2007, 113, 277-293.	7.7	113
71	Cerebral beta-amyloid angiopathy in aged squirrel monkeys. Histology and Histopathology, 2007, 22, 155-67.	0.7	51
72	Exogenous Induction of Cerebral ß-Amyloidogenesis Is Governed by Agent and Host. Science, 2006, 313, 1781-1784.	12.6	875

#	Article	IF	CITATIONS
73	Alzheimer therapeutics—what after the cholinesterase inhibitors?. Age and Ageing, 2006, 35, 332-335.	1.6	16
74	Inducible proteopathies. Trends in Neurosciences, 2006, 29, 438-443.	8.6	92
75	Models of Alzheimer's Disease. , 2006, , 121-134.		2
76	Cerebrovascular P-glycoprotein expression is decreased in Creutzfeldt–Jakob disease. Acta Neuropathologica, 2006, 111, 436-443.	7.7	40
77	Koch's postulates and infectious proteins. Acta Neuropathologica, 2006, 112, 1-4.	7.7	69
78	Calcium channel alpha2-delta type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdala, and spinal cord: An ex vivo autoradiographic study in alpha2-delta type 1 genetically modified mice. Brain Research, 2006, 1075, 68-80.	2.2	142
79	Accelerated Delimitation of the Infarct Zone by Capillary-Derived Nestin- Positive Cells in Aged Rats. Current Neurovascular Research, 2006, 3, 3-13.	1.1	55
80	Proteomic Identification of the Involvement of the Mitochondrial Rieske Protein in Epilepsy. Epilepsia, 2005, 46, 339-343.	5.1	19
81	Emerging prospects for the disease-modifying treatment of Alzheimer's disease. Biochemical Pharmacology, 2005, 69, 1001-1008.	4.4	51
82	Aging, gender and APOE isotype modulate metabolism of Alzheimer's Abeta peptides and F2-isoprostanes in the absence of detectable amyloid deposits. Journal of Neurochemistry, 2004, 90, 1011-1018.	3.9	40
83	Accelerated accumulation of N- and C-terminal betaAPP fragments and delayed recovery of microtubule-associated protein 1B expression following stroke in aged rats. European Journal of Neuroscience, 2004, 19, 2270-2280.	2.6	67
84	Alzheimer's Aβ vaccination of rhesus monkeys (Macaca mulatta). Mechanisms of Ageing and Development, 2004, 125, 149-151.	4.6	31
85	Toward modeling hemorrhagic and encephalitic complications of Alzheimer amyloid-β vaccination in nonhuman primates. Current Opinion in Immunology, 2004, 16, 607-615.	5.5	29
86	Alzheimer AÎ ² Vaccination of Rhesus Monkeys (Macaca Mulatta). Alzheimer Disease and Associated Disorders, 2004, 18, 44-46.	1.3	24
87	The Role of P-glycoprotein in Cerebral Amyloid Angiopathy; Implications for the Early Pathogenesis of Alzheimers Disease. Current Alzheimer Research, 2004, 1, 121-125.	1.4	154
88	Cerebral β-amyloid deposition is augmented by the –491AA promoter polymorphism in non-demented elderly individuals bearing the apolipoprotein E ε4 allele. Acta Neuropathologica, 2003, 105, 25-29.	7.7	18
89	Accelerated Glial Reactivity to Stroke in Aged Rats Correlates with Reduced Functional Recovery. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 845-854.	4.3	202
90	Kindling Status in Sprague-Dawley Rats Induced by Pentylenetetrazole. American Journal of Pathology, 2003, 162, 1027-1034.	3.8	45

#	Article	IF	CITATIONS
91	Deposition of Alzheimer's ??-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics and Genomics, 2002, 12, 535-541.	5.7	311
92	Exogenous induction of cerebral β-amyloidosis in βAPP-transgenic mice. Peptides, 2002, 23, 1241-1247.	2.4	80
93	Amyloid-Associated Neuron Loss and Gliogenesis in the Neocortex of Amyloid Precursor Protein Transgenic Mice. Journal of Neuroscience, 2002, 22, 515-522.	3.6	199
94	Axonopathy, tau abnormalities, and dyskinesia, but no neurofibrillary tangles in p25-transgenic mice. Journal of Comparative Neurology, 2002, 446, 257-266.	1.6	99
95	Modeling Alzheimer's disease and other proteopathies in vivo: Is seeding the key?. Amino Acids, 2002, 23, 87-93.	2.7	29
96	Activated microglia do not mediate the early deposition of Abeta in carriers of the apolipoprotein Eepsilon4 allele. , 2002, 21, 99-106.		1
97	Proteopathy: the next therapeutic frontier?. Current Opinion in Investigational Drugs, 2002, 3, 782-7.	2.3	5
98	Augmented Senile Plaque Load in Aged Female β-Amyloid Precursor Protein-Transgenic Mice. American Journal of Pathology, 2001, 158, 1173-1177.	3.8	250
99	The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APPSW mice. Neurobiology of Aging, 2001, 22, 49-61.	3.1	142
100	Transgenic Mouse Models of Cerebral Amyloid Angiopathy. Advances in Experimental Medicine and Biology, 2001, 487, 123-128.	1.6	3
101	The Cerebral Proteopathies. Molecular Neurobiology, 2000, 21, 083-096.	4.0	86
102	Apolipoprotein E4 promotes the early deposition of Aβ42 and then Aβ40 in the elderly. Acta Neuropathologica, 2000, 100, 36-42.	7.7	79
103	Evidence for Seeding of β-Amyloid by Intracerebral Infusion of Alzheimer Brain Extracts in β-Amyloid Precursor Protein-Transgenic Mice. Journal of Neuroscience, 2000, 20, 3606-3611.	3.6	344
104	Protein conformational diseases: the case for new semantic currency. Neurobiology of Aging, 2000, 21, 567.	3.1	2
105	The cerebral proteopathies. Neurobiology of Aging, 2000, 21, 559-561.	3.1	52
106	Cerebral Amyloid Angiopathy in Aged Dogs and Nonhuman Primates. , 2000, , 313-324.		5
107	Chapter 3. β-Amyloid as a Target for Alzheimer's Disease Therapy. Annual Reports in Medicinal Chemistry, 1999, , 21-30.	0.9	3
108	Upregulation of MAP1B and MAP2 in the Rat Brain after Middle Cerebral Artery Occlusion: Effect of Age. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 425-434.	4.3	54

#	Article	IF	CITATIONS
109	Emerging strategies for the treatment of Alzheimer's disease at the Millennium. Expert Opinion on Emerging Drugs, 1999, 4, 35-86.	1.1	1
110	Primate-like amyloid-β sequence but no cerebral amyloidosis in aged tree shrews. Neurobiology of Aging, 1999, 20, 47-51.	3.1	52
111	Cerebrovascular amyloidosis: experimental analysis in vitro and in vivo. Histology and Histopathology, 1999, 14, 827-37.	0.7	14
112	β-Amyloid Precursor Protein and β-Amyloid Peptide Immunoreactivity in the Rat Brain After Middle Cerebral Artery Occlusion. Stroke, 1998, 29, 2196-2202.	2.0	91
113	Apolipoprotein E4 Promotes Incipient Alzheimer Pathology in the Elderly. Alzheimer Disease and Associated Disorders, 1998, 12, 33-39.	1.3	68
114	Animal models of cerebral \hat{l}^2 -amyloid angiopathy. Brain Research Reviews, 1997, 25, 70-84.	9.0	94
115	Characterization of amyloid β protein species in cerebral amyloid angiopathy of a squirrel monkey by immunocytochemistry and enzyme-linked immunosorbent assay. Brain Research, 1997, 764, 225-229.	2.2	16
116	Empirical assessment of synapse numbers in primate neocortex. Journal of Neuroscience Methods, 1997, 75, 119-126.	2.5	39
117	Similarities in the age-related hippocampal deposition of periodic acid-Schiff-positive granules in the senescence-accelerated mouse (SAM P8) and C57BL/6 mouse strains. Neuroscience, 1996, 74, 733-740.	2.3	31
118	Cerebrovascular amyloidosis in squirrel monkeys and rhesus monkeys: apolipoprotein E genotype. FEBS Letters, 1996, 379, 132-134.	2.8	25
119	Intra-arterial infusion of [125l]Aβ 1–40 labels amyloid deposits in the aged primate brain in vivo. NeuroReport, 1996, 7, 2607-2612.	1.2	73
120	Cystatin C. Stroke, 1996, 27, 2080-2085.	2.0	27
121	Opioid precursor gene expression in the human hypothalamus. Journal of Comparative Neurology, 1995, 353, 604-622.	1.6	53
122	Neuronal Number and Size Are Preserved in the Nucleus basalis of Aged Rhesus Monkeys. Dementia and Geriatric Cognitive Disorders, 1995, 6, 131-141.	1.5	10
123	β-Amyloid precursor protein gene in squirrel monkeys with cerebral amyloid angiopathy. Neurobiology of Aging, 1995, 16, 805-808.	3.1	24
124	The senescent primate brain. Seminars in Neuroscience, 1994, 6, 379-385.	2.2	6
125	Age-related fibrillar deposits in brains of C57BL/6 mice. Molecular Neurobiology, 1994, 9, 125-133.	4.0	39
126	Age-related deposition of glia-associated fibrillar material in brains of c57BL/6 mice. Neuroscience, 1994, 60, 875-889.	2.3	74

#	Article	IF	CITATIONS
127	Labeling of Cerebral AmyloidIn Vivowith a Monoclonal Antibody. Journal of Neuropathology and Experimental Neurology, 1994, 53, 377-383.	1.7	41
128	Aged Non-Human Primates as Models of β-Amyloidoses. , 1994, , 390-394.		2
129	Amyloid in Alzheimer's Disease and Animal Models. , 1994, , 156-168.		1
130	Vasopressin and oxytocin gene expression in the human hypothalamus. Journal of Comparative Neurology, 1993, 337, 295-306.	1.6	43
131	Age-Dependent Impairment of Mitochondrial Function in Primate Brain. Journal of Neurochemistry, 1993, 60, 1964-1967.	3.9	252
132	Localization of a laminin-binding protein in brain. Neuroscience, 1993, 56, 1009-1022.	2.3	14
133	Comparative neuropathology of aged nonhuman primates. Neurobiology of Aging, 1993, 14, 667.	3.1	8
134	Laminin-like and Laminin-binding Protein-like Immunoreactive Astrocytes in Rat Hippocampus after Transient Ischemia Annals of the New York Academy of Sciences, 1993, 679, 245-252.	3.8	29
135	The Age of Biosenescence and the Incidence of Cerebral β-Amyloidosis in Aged Captive Rhesus Monkeysa. Annals of the New York Academy of Sciences, 1993, 695, 232-235.	3.8	40
136	Age-Related Lesions, Nervous System. Monographs on Pathology of Laboratory Animals, 1993, , 173-183.	0.0	7
137	Basal forebrain neurons and memory: A biochemical, histological, and behavioral study of differential vulnerability to ibotenate and quisqualate Behavioral Neuroscience, 1992, 106, 909-923.	1.2	71
138	Age-associated inclusions in normal and transgenic mouse brain. Science, 1992, 255, 1443-1445.	12.6	74
139	Toxicity of synthetic al ² peptides and modeling of alzheimer's disease. Neurobiology of Aging, 1992, 13, 623-625.	3.1	39
140	Neuronal degeneration in human diseases and animal models. Journal of Neurobiology, 1992, 23, 1277-1294.	3.6	34
141	Amyloidosis in aging and Alzheimer's disease. American Journal of Pathology, 1992, 141, 767-72.	3.8	28
142	Regulation and genetic control of brain amyloid. Brain Research Reviews, 1991, 16, 83-114.	9.0	21
143	Neurotransmitters in neocortex of aged rhesus monkeys. Neurobiology of Aging, 1991, 12, 407-412.	3.1	42
144	Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction. Neurobiology of Aging, 1991, 12, 99-111.	3.1	258

9

#	Article	IF	CITATIONS
145	Loss of NMDA, but not GABA-A, binding in the brains of aged rats and monkeys. Neurobiology of Aging, 1991, 12, 93-98.	3.1	239
146	Aged Nonâ€Human Primates: An Animal Model of Ageâ€Associated Neurodegenerative Disease. Brain Pathology, 1991, 1, 287-296.	4.1	90
147	Galanin mRNA in the nucleus basalis of Meynert complex of baboons and humans. Journal of Comparative Neurology, 1991, 303, 113-120.	1.6	53
148	Chapter 25 Neuronal responses to injury and aging: lessons from animal models. Progress in Brain Research, 1990, 86, 297-308.	1.4	8
149	Amyloid in the brains of aged squirrel monkeys. Acta Neuropathologica, 1990, 80, 381-387.	7.7	119
150	Neuronal Disorders: Studies of Animal Models and Human Diseases. Toxicologic Pathology, 1990, 18, 128-137.	1.8	4
151	Laminar organization and age-related loss of cholinergic receptors in temporal neocortex of rhesus monkey. Journal of Neuroscience, 1990, 10, 2879-2885.	3.6	41
152	Brain abnormalities in aged monkeys: a model sharing features with Alzheimer's disease. Key Topics in Brain Research, 1990, , 141-150.	0.2	0
153	Cellular/molecular biological studies of brain abnormalities in Alzheimer's disease and animal models. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1989, 1, 13-13.	1.2	0
154	Peptidergic neurons in the basal forebrain magnocellular complex of the rhesus monkey. Journal of Comparative Neurology, 1989, 280, 272-282.	1.6	101
155	Compartment-specific changes in the density of choline and dopamine uptake sites and muscarinic and dopaminergic receptors during the development of the baboon striatum: A quantitative receptor autoradiographic study. Journal of Comparative Neurology, 1989, 288, 428-446.	1.6	33
156	Serotoninergic neurites in senile plaques in cingulate cortex of aged nonhuman primate. Synapse, 1989, 3, 12-18.	1.2	10
157	GABAergic neurons in the primate basal forebrain magnocellular complex. Brain Research, 1989, 499, 188-192.	2.2	44
158	Aberrant phosphorylation of neurofilaments accompanies transmitter-related changes in rat septal neurons following transection of the fimbria-fornix. Brain Research, 1989, 482, 205-218.	2.2	71
159	NEUROFIBRILLARY TANGLES AND SENILE PLAQUES IN A COGNITIVELY IMPAIRED, AGED NONHUMAN PRIMATE. Journal of Neuropathology and Experimental Neurology, 1989, 48, 378.	1.7	14
160	Development of β1 and β2 adrenergic receptors in baboon brain: An autoradiographic study using [1251]iodocyanopindolol. Journal of Comparative Neurology, 1988, 273, 318-329.	1.6	23
161	Topographic, non-collateralized basal forebrain projections to amygdala, hippocampus, and anterior cingulate cortex in the rhesus monkey. Brain Research, 1988, 463, 133-139.	2.2	62
162	Developmental changes of neuropeptides and amino acids in baboon cortex. Developmental Brain Research, 1988, 44, 156-159.	1.7	13

#	Article	IF	CITATIONS
163	The neural basis of memory decline in aged monkeys. Neurobiology of Aging, 1988, 9, 657-666.	3.1	124
164	Multiple Transmitter Systems Contribute Neurites to Individual Senile Plaques. Journal of Neuropathology and Experimental Neurology, 1988, 47, 138-144.	1.7	64
165	Neurotransmitters and memory: Role of cholinergic, serotonergic, and noradrenergic systems Behavioral Neuroscience, 1987, 101, 325-332.	1.2	134
166	An autoradiographic study of the development of [3H]hemicholinium-3 binding sites in human and baboon basal ganglia: a marker for the sodium-dependent high affinity choline uptake system. Developmental Brain Research, 1987, 34, 291-297.	1.7	22
167	Corticotropin-releasing factor as a transmitter in the human olivocerebellar pathway. Brain Research, 1987, 415, 347-352.	2.2	51
168	Age differences in recognition memory of the rhesus monkey (Macaca mulatta). Neurobiology of Aging, 1987, 8, 435-440.	3.1	156
169	Senile plaques in aged squirrel monkeys. Neurobiology of Aging, 1987, 8, 291-296.	3.1	90
170	Immunohistochemical study of neurons containing corticotropin-releasing factor in Alzheimer's disease. Synapse, 1987, 1, 405-410.	1.2	66
171	Loss of pedunculopontine neurons in progressive supranuclear palsy. Annals of Neurology, 1987, 22, 18-25.	5.3	181
172	Dysfunction and Death of Neurons in Human Degenerative Neurological Diseases and in Animal Models. Novartis Foundation Symposium, 1987, 126, 30-48.	1.1	9
173	Corticotropin-releasing factor mRNA is expressed in the inferior olives of rodents and primates. Molecular Brain Research, 1986, 1, 189-192.	2.3	54
174	Choline acetyltransferase and acetylcholinesterase activities in neocortex and hippocampus of squirrel monkey (Saimiri sciureus). American Journal of Primatology, 1986, 11, 195-201.	1.7	5
175	Molecular Approaches to Human Neurological Diseases and Their Animal Models. , 1986, , 171-180.		1
176	Abnormalities of the nucleus basalis in Down's syndrome. Annals of Neurology, 1985, 18, 310-313.	5.3	196
177	Noncollateral projections of basal forebrain neurons to frontal and parietal neocortex in primates. Brain Research Bulletin, 1985, 15, 307-314.	3.0	55
178	Neurobiological Studies of Transmitter Systems in Aging and in Alzheimer-Type Dementia. Annals of the New York Academy of Sciences, 1985, 457, 35-51.	3.8	16
179	The Functional Organization of the Basal Forebrain Cholinergic System in Primates and the Role of this System in Alzheimer's Disease. Annals of the New York Academy of Sciences, 1985, 444, 287-295.	3.8	24
180	Glutamic acid decarboxylase-like immunoreactive neurites in senile plaques. Neuroscience Letters, 1985, 59, 165-169.	2.1	62

#	Article	IF	CITATIONS
181	Catecholaminergic neurites in senile plaques in prefrontal cortex of aged nonhuman primates. Neuroscience, 1985, 16, 691-699.	2.3	79
182	Somatostatinergic neurites in senile plaques of aged non-human primates. Brain Research, 1984, 324, 394-396.	2.2	58
183	Ultrastructure of neurons in the nucleus basalis of meynert in squirrel monkey. Journal of Comparative Neurology, 1983, 217, 158-166.	1.6	27
184	Subcortical projections to the occipital and parietal lobes of the chimpanzee brain. Journal of Comparative Neurology, 1983, 220, 106-115.	1.6	79
185	Rostral midbrain lesions and copulatory behavior in male rats. Physiology and Behavior, 1981, 26, 349-353.	2.1	13
186	The ontogeny of the neural substrate for language. Journal of Human Evolution, 1981, 10, 429-441.	2.6	4
187	Prenatal ionizing irradiaton and early postnatal growth of Colombian and Bolivian squirrel monkeys (Saimiri sciureus). American Journal of Primatology, 1981, 1, 379-387.	1.7	2
188	Seasonal Changes in the Thyroid Hormones of the Male Squirrel Monkey. Archives of Andrology, 1980, 4, 133-136.	1.0	13
189	Studies on the mechanism of sprouting of noradrenergic terminals in rat and mouse cerebellum after neonatal 6-hydroxydona. Brain Research Bulletin, 1978, 3, 525-531.	3.0	19