
Anna N Honko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1995465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fecal Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2) RNA Is Associated With Decreased Coronavirus Disease 2019 (COVID-19) Survival. Clinical Infectious Diseases, 2022, 74, 1081-1084.	5.8	12
2	Detailed analysis of the pathologic hallmarks of Nipah virus (Malaysia) disease in the African green monkey infected by the intratracheal route. PLoS ONE, 2022, 17, e0263834.	2.5	2
3	IMM-BCP-01, a patient-derived anti–SARS-CoV-2 antibody cocktail, is active across variants of concern including Omicron BA.1 and BA.2. Science Immunology, 2022, 7, .	11.9	8
4	Detecting Pathogen Exposure During the Non-symptomatic Incubation Period Using Physiological Data: Proof of Concept in Non-human Primates. Frontiers in Physiology, 2021, 12, 691074.	2.8	2
5	Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike. Cell, 2021, 184, 4969-4980.e15.	28.9	94
6	An AAV-based, room-temperature-stable, single-dose COVID-19 vaccine provides durable immunogenicity and protection in non-human primates. Cell Host and Microbe, 2021, 29, 1437-1453.e8.	11.0	53
7	Dissecting strategies to tune the therapeutic potential of SARS-CoV-2–specific monoclonal antibody CR3022. JCI Insight, 2021, 6, .	5.0	34
8	A Modular Biomaterial Scaffoldâ€Based Vaccine Elicits Durable Adaptive Immunity to Subunit SARS oVâ€2 Antigens. Advanced Healthcare Materials, 2021, 10, e2101370.	7.6	10
9	Surface Glycan Modification of Cellular Nanosponges to Promote SARS-CoV-2 Inhibition. Journal of the American Chemical Society, 2021, 143, 17615-17621.	13.7	46
10	Natural History of Aerosol-Induced Ebola Virus Disease in Rhesus Macaques. Viruses, 2021, 13, 2297.	3.3	4
11	Natural History of Aerosol Induced Lassa Fever in Non-Human Primates. Viruses, 2020, 12, 593.	3.3	14
12	Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity. Nano Letters, 2020, 20, 5570-5574.	9.1	262
13	Previremic Identification of Ebola or Marburg Virus Infection Using Integrated Host-Transcriptome and Viral Genome Detection. MBio, 2020, 11, .	4.1	6
14	In Vivo Activity of Amodiaquine against Ebola Virus Infection. Scientific Reports, 2019, 9, 20199.	3.3	16
15	Nipah virus persists in the brains of nonhuman primate survivors. JCI Insight, 2019, 4, .	5.0	21
16	Virus-encoded miRNAs in Ebola virus disease. Scientific Reports, 2018, 8, 6480.	3.3	34
17	A point-of-care diagnostic for differentiating Ebola from endemic febrile diseases. Science Translational Medicine, 2018, 10, .	12.4	54
18	Critical role for cholesterol in Lassa fever virus entry identified by a novel small molecule inhibitor targeting the viral receptor LAMP1. PLoS Pathogens, 2018, 14, e1007322.	4.7	18

Αννά Ν Ηόνκο

#	Article	IF	CITATIONS
19	Fully Human Immunoglobulin G From Transchromosomic Bovines Treats Nonhuman Primates Infected With Ebola Virus Makona Isolate. Journal of Infectious Diseases, 2018, 218, S636-S648.	4.0	19
20	In Vitro and In Vivo Activity of Amiodarone Against Ebola Virus. Journal of Infectious Diseases, 2018, 218, S592-S596.	4.0	21
21	Comparative Transcriptomics in Ebola Makona-Infected Ferrets, Nonhuman Primates, and Humans. Journal of Infectious Diseases, 2018, 218, S486-S495.	4.0	15
22	Testing therapeutics in cell-based assays: Factors that influence the apparent potency of drugs. PLoS ONE, 2018, 13, e0194880.	2.5	31
23	Interferon-β and Interferon-γ Are Weak Inhibitors of Ebola Virus in Cell-Based Assays. Journal of Infectious Diseases, 2017, 215, 1416-1420.	4.0	9
24	High dose sertraline monotherapy fails to protect rhesus macaques from lethal challenge with Ebola virus Makona. Scientific Reports, 2017, 7, 5886.	3.3	20
25	Use of Unamplified RNA/cDNA–Hybrid Nanopore Sequencing for Rapid Detection and Characterization of RNA Viruses. Emerging Infectious Diseases, 2016, 22, 1448-1451.	4.3	36
26	Evaluation of the Activity of Lamivudine and Zidovudine against Ebola Virus. PLoS ONE, 2016, 11, e0166318.	2.5	28
27	Circulating microRNA profiles of Ebola virus infection. Scientific Reports, 2016, 6, 24496.	3.3	50
28	Comparison of respiratory inductive plethysmography versus head-out plethysmography for anesthetized nonhuman primates in an animal biosafety level 4 facility. Inhalation Toxicology, 2016, 28, 670-676.	1.6	8
29	Monoclonal antibody therapy for Junin virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4458-4463.	7.1	50
30	Overlooking the importance of immunoassays – Authors' reply. Lancet Infectious Diseases, The, 2016, 16, 1110.	9.1	0
31	In vivo Ebola virus infection leads to a strong innate response in circulating immune cells. BMC Genomics, 2016, 17, 707.	2.8	54
32	Essentials of filoviral load quantification. Lancet Infectious Diseases, The, 2016, 16, e134-e138.	9.1	13
33	Necrotizing Scleritis, Conjunctivitis, and Other Pathologic Findings in the Left Eye and Brain of an Ebola Virus–Infected Rhesus Macaque (<i>Macaca mulatta</i>) With Apparent Recovery and a Delayed Time of Death. Journal of Infectious Diseases, 2016, 213, 57-60.	4.0	34
34	Ebola Virus Infections in Nonhuman Primates Are Temporally Influenced by Glycoprotein Poly-U Editing Site Populations in the Exposure Material. Viruses, 2015, 7, 6739-6754.	3.3	29
35	Detailed Analysis of the African Green Monkey Model of Nipah Virus Disease. PLoS ONE, 2015, 10, e0117817.	2.5	38
36	Long-term sequelae after Ebola virus disease in Bundibugyo, Uganda: a retrospective cohort study. Lancet Infectious Diseases, The, 2015, 15, 905-912.	9.1	193

Αννά Ν Ηόνκο

#	Article	IF	CITATIONS
37	Optimized microRNA purification from TRIzol-treated plasma. BMC Genomics, 2015, 16, 95.	2.8	43
38	Temporal Characterization of Marburg Virus Angola Infection following Aerosol Challenge in Rhesus Macaques. Journal of Virology, 2015, 89, 9875-9885.	3.4	24
39	Arenaviruses. , 2015, , 501-541.		1
40	Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Archives of Virology, 2014, 159, 1229-37.	2.1	59
41	Development and Evaluation of a Panel of Filovirus Sequence Capture Probes for Pathogen Detection by Next-Generation Sequencing. PLoS ONE, 2014, 9, e107007.	2.5	28
42	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	3.3	49
43	Transcriptional Correlates of Disease Outcome in Anticoagulant-Treated Non-Human Primates Infected with Ebolavirus. PLoS Neglected Tropical Diseases, 2014, 8, e3061.	3.0	22
44	Euthanasia Assessment in Ebola Virus Infected Nonhuman Primates. Viruses, 2014, 6, 4666-4682.	3.3	22
45	Enhanced methods for unbiased deep sequencing of Lassa and Ebola RNA viruses from clinical and biological samples. Genome Biology, 2014, 15, 519.	8.8	129
46	Lassa and Marburg viruses elicit distinct host transcriptional responses early after infection. BMC Genomics, 2014, 15, 960.	2.8	29
47	Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge. Nature Medicine, 2014, 20, 1126-1129.	30.7	311
48	Pyridinyl imidazole inhibitors of p38 MAP kinase impair viral entry and reduce cytokine induction by Zaire ebolavirus in human dendritic cells. Antiviral Research, 2014, 107, 102-109.	4.1	69
49	Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 1425-1432.	2.1	54
50	Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 301-311.	2.1	99
51	Ebola Virus Exploits a Monocyte Differentiation Program To Promote Its Entry. Journal of Virology, 2013, 87, 3801-3814.	3.4	60
52	Transcriptional Profiling of the Circulating Immune Response to Lassa Virus in an Aerosol Model of Exposure. PLoS Neglected Tropical Diseases, 2013, 7, e2171.	3.0	36
53	Interferon-Î ² Therapy Prolongs Survival in Rhesus Macaque Models of Ebola and Marburg Hemorrhagic Fever. Journal of Infectious Diseases, 2013, 208, 310-318.	4.0	93
54	Pathology of Experimental Aerosol Zaire Ebolavirus Infection in Rhesus Macaques. Veterinary Pathology, 2013, 50, 514-529.	1.7	87

Αννά Ν Ηόνκο

#	Article	IF	CITATIONS
55	Potential Vaccines and Post-Exposure Treatments for Filovirus Infections. Viruses, 2012, 4, 1619-1650.	3.3	44
56	Ultrastructural study of Rift Valley fever virus in the mouse model. Virology, 2012, 431, 58-70.	2.4	28
57	Ebola Virus Genome Plasticity as a Marker of Its Passaging History: A Comparison of In Vitro Passaging to Non-Human Primate Infection. PLoS ONE, 2012, 7, e50316.	2.5	44
58	Real-time Monitoring of Cardiovascular Function in Rhesus Macaques Infected With Zaire ebolavirus. Journal of Infectious Diseases, 2011, 204, S1000-S1010.	4.0	33
59	CD8+ cellular immunity mediates rAd5 vaccine protection against Ebola virus infection of nonhuman primates. Nature Medicine, 2011, 17, 1128-1131.	30.7	200
60	Therapeutics of Ebola Hemorrhagic Fever: Whole-Genome Transcriptional Analysis of Successful Disease Mitigation. Journal of Infectious Diseases, 2011, 204, S1043-S1052.	4.0	38
61	Recombinant Adenovirus Serotype 26 (Ad26) and Ad35 Vaccine Vectors Bypass Immunity to Ad5 and Protect Nonhuman Primates against Ebolavirus Challenge. Journal of Virology, 2011, 85, 4222-4233.	3.4	176
62	The pathogenesis of Rift Valley fever virus in the mouse model. Virology, 2010, 407, 256-267.	2.4	122
63	Demonstration of Cross-Protective Vaccine Immunity against an Emerging Pathogenic Ebolavirus Species. PLoS Pathogens, 2010, 6, e1000904.	4.7	106
64	Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet, The, 2010, 375, 1896-1905.	13.7	414
65	A broad-spectrum antiviral targeting entry of enveloped viruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3157-3162.	7.1	214
66	Mucosal adjuvant activity of flagellin in aged mice. Mechanisms of Ageing and Development, 2008, 129, 271-281.	4.6	52
67	Flagellin Is an Effective Adjuvant for Immunization against Lethal Respiratory Challenge with Yersinia pestis. Infection and Immunity, 2006, 74, 1113-1120.	2.2	250
68	Effects of Flagellin on Innate and Adaptive Immunity. Immunologic Research, 2005, 33, 083-102.	2.9	137
69	Mucosal Administration of Flagellin Induces Innate Immunity in the Mouse Lung. Infection and Immunity, 2004, 72, 6676-6679.	2.2	112
70	Induction of Macrophage Nitric Oxide Production by Gram-Negative Flagellin Involves Signaling Via Heteromeric Toll-Like Receptor 5/Toll-Like Receptor 4 Complexes. Journal of Immunology, 2003, 170, 6217-6223.	0.8	177
71	Detection of Aeromonas caviae in the common housefly Musca domestica by culture and polymerase chain reaction. Epidemiology and Infection, 2001, 127, 561-566.	2.1	22
72	Therapeutic Potential of SARS-CoV-2-Specific Monoclonal Antibody CR3022. SSRN Electronic Journal, 0,	0.4	1