
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1993951/publications.pdf Version: 2024-02-01



IENNIEED A DOUDNA

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | CRISPR–Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells. Nucleic Acids Research, 2022, 50, 1256-1268.                   | 14.5 | 39        |
| 2  | Species- and site-specific genome editing in complex bacterial communities. Nature Microbiology, 2022, 7, 34-47.                                                              | 13.3 | 127       |
| 3  | Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Molecular Cell, 2022, 82, 1199-1209.e6.                                                     | 9.7  | 29        |
| 4  | Neutralizing immunity in vaccine breakthrough infections from the SARS-CoV-2 Omicron and Delta variants. Cell, 2022, 185, 1539-1548.e5.                                       | 28.9 | 126       |
| 5  | A functional map of HIV-host interactions in primary human T cells. Nature Communications, 2022, 13, 1752.                                                                    | 12.8 | 27        |
| 6  | CRISPR–Cas9 bends and twists DNA to read its sequence. Nature Structural and Molecular Biology, 2022, 29, 395-402.                                                            | 8.2  | 37        |
| 7  | Crystal structure of an RNA/DNA strand exchange junction. PLoS ONE, 2022, 17, e0263547.                                                                                       | 2.5  | 3         |
| 8  | Structural biology of CRISPR–Cas immunity and genome editing enzymes. Nature Reviews<br>Microbiology, 2022, 20, 641-656.                                                      | 28.6 | 78        |
| 9  | Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature, 2022, 607, 351-355.                                                                       | 27.8 | 143       |
| 10 | A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Molecular Cell, 2022, 82, 2148-2160.e4.                                                                 | 9.7  | 25        |
| 11 | Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell, 2021, 184, 323-333.e9.                                                       | 28.9 | 613       |
| 12 | Controlling and enhancing CRISPR systems. Nature Chemical Biology, 2021, 17, 10-19.                                                                                           | 8.0  | 108       |
| 13 | Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nature<br>Biotechnology, 2021, 39, 84-93.                                                    | 17.5 | 80        |
| 14 | Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nature Microbiology, 2021, 6, 354-365. | 13.3 | 109       |
| 15 | Human Molecular Genetics and Genomics — Important Advances and Exciting Possibilities. New<br>England Journal of Medicine, 2021, 384, 1-4.                                    | 27.0 | 37        |
| 16 | Quantification of Cas9 binding and cleavage across diverse guide sequences maps landscapes of target engagement. Science Advances, 2021, 7, .                                 | 10.3 | 28        |
| 17 | Cancer-specific loss of <i>TERT</i> activation sensitizes glioblastoma to DNA damage. Proceedings of the United States of America, 2021, 118, .                               | 7.1  | 28        |
| 18 | The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.                                                                                                      | 27.8 | 84        |

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex.<br>Nature Communications, 2021, 12, 2571.                                   | 12.8 | 12        |
| 20 | Launching a saliva-based SARS-CoV-2 surveillance testing program on a university campus. PLoS ONE, 2021, 16, e0251296.                                                        | 2.5  | 15        |
| 21 | Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering. Cell Reports, 2021, 35, 109207.                                                      | 6.4  | 91        |
| 22 | DNA interference states of the hypercompact CRISPR–CasΦ effector. Nature Structural and Molecular<br>Biology, 2021, 28, 652-661.                                              | 8.2  | 50        |
| 23 | Accelerated RNA detection using tandem CRISPR nucleases. Nature Chemical Biology, 2021, 17, 982-988.                                                                          | 8.0  | 135       |
| 24 | Robotic RNA extraction for SARS-CoV-2 surveillance using saliva samples. PLoS ONE, 2021, 16, e0255690.                                                                        | 2.5  | 14        |
| 25 | Synthesis of Multi-Protein Complexes through Charge-Directed Sequential Activation of Tyrosine<br>Residues. Journal of the American Chemical Society, 2021, 143, 13538-13547. | 13.7 | 18        |
| 26 | Kinetic analysis of Cas12a and Cas13a RNA-Guided nucleases for development of improved CRISPR-Based diagnostics. IScience, 2021, 24, 102996.                                  | 4.1  | 57        |
| 27 | Comprehensive deletion landscape of CRISPR-Cas9 identifies minimal RNA-guided DNA-binding modules.<br>Nature Communications, 2021, 12, 5664.                                  | 12.8 | 25        |
| 28 | OUP accepted manuscript. Nucleic Acids Research, 2021, 49, 3546-3556.                                                                                                         | 14.5 | 9         |
| 29 | LuNER: Multiplexed SARS-CoV-2 detection in clinical swab and wastewater samples. PLoS ONE, 2021, 16, e0258263.                                                                | 2.5  | 5         |
| 30 | Optimizing COVID-19 control with asymptomatic surveillance testing in a university environment.<br>Epidemics, 2021, 37, 100527.                                               | 3.0  | 21        |
| 31 | Rapid assessment of SARS-CoV-2–evolved variants using virus-like particles. Science, 2021, 374,<br>1626-1632.                                                                 | 12.6 | 216       |
| 32 | CRISPR-Casî   from huge phages is a hypercompact genome editor. Science, 2020, 369, 333-337.                                                                                  | 12.6 | 352       |
| 33 | Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery. Acta<br>Biomaterialia, 2020, 114, 358-368.                                         | 8.3  | 62        |
| 34 | DNA capture by a CRISPR-Cas9–guided adenine base editor. Science, 2020, 369, 566-571.                                                                                         | 12.6 | 114       |
| 35 | Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. Journal of Biological Chemistry, 2020, 295, 14473-14487.                                         | 3.4  | 49        |
| 36 | Site-Specific Bioconjugation through Enzyme-Catalyzed Tyrosine–Cysteine Bond Formation. ACS<br>Central Science, 2020, 6, 1564-1571.                                           | 11.3 | 60        |

| #  | Article                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Blueprint for a pop-up SARS-CoV-2 testing lab. Nature Biotechnology, 2020, 38, 791-797.                                                                                  | 17.5 | 50        |
| 38 | Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology, 2020, 38, 883-891.                         | 17.5 | 502       |
| 39 | Potent CRISPR-Cas9 inhibitors from <i>Staphylococcus</i> genomes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6531-6539. | 7.1  | 47        |
| 40 | Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling. Proceedings of the United States of America, 2020, 117, 5853-5860.                     | 7.1  | 62        |
| 41 | A scoutRNA Is Required for Some Type V CRISPR-Cas Systems. Molecular Cell, 2020, 79, 416-424.e5.                                                                         | 9.7  | 49        |
| 42 | Clades of huge phages from across Earth's ecosystems. Nature, 2020, 578, 425-431.                                                                                        | 27.8 | 331       |
| 43 | The promise and challenge of therapeutic genome editing. Nature, 2020, 578, 229-236.                                                                                     | 27.8 | 599       |
| 44 | Knocking out barriers to engineered cell activity. Science, 2020, 367, 976-977.                                                                                          | 12.6 | 10        |
| 45 | Machine learning predicts new anti-CRISPR proteins. Nucleic Acids Research, 2020, 48, 4698-4708.                                                                         | 14.5 | 70        |
| 46 | CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks. ELife, 2020, 9, .                                                                                  | 6.0  | 80        |
| 47 | Attachment of a 32P-phosphate to the 3′ Terminus of a DNA Oligonucleotide. Bio-protocol, 2020, 10, e3787.                                                                | 0.4  | 0         |
| 48 | Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble. Nature Communications, 2019, 10, 3001.                                                 | 12.8 | 40        |
| 49 | CRISPR's unwanted anniversary. Science, 2019, 366, 777-777.                                                                                                              | 12.6 | 12        |
| 50 | A Functional Mini-Integrase in a Two-Protein Type V-C CRISPR System. Molecular Cell, 2019, 73, 727-737.e3.                                                               | 9.7  | 22        |
| 51 | Spacer Acquisition Rates Determine the Immunological Diversity of the Type II CRISPR-Cas Immune Response. Cell Host and Microbe, 2019, 25, 242-249.e3.                   | 11.0 | 24        |
| 52 | Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Nature Communications, 2019, 10, 2806.                                              | 12.8 | 50        |
| 53 | Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs. Nature Communications, 2019, 10, 2127.                                                      | 12.8 | 133       |
| 54 | Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics. ACS Central<br>Science, 2019, 5, 651-662.                                          | 11.3 | 99        |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Nontoxic nanopore electroporation for effective intracellular delivery of biological<br>macromolecules. Proceedings of the National Academy of Sciences of the United States of America,<br>2019, 116, 7899-7904.            | 7.1  | 120       |
| 56 | Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nature Structural and Molecular Biology, 2019, 26, 315-321.                                                                                                            | 8.2  | 99        |
| 57 | The NAI Fellow Profile: An Interview with Dr. Jennifer Doudna. Technology and Innovation, 2019, 20, 475-481.                                                                                                                 | 0.2  | 0         |
| 58 | Reply to Nathamgari et al.: Nanopore electroporation for intracellular delivery of biological<br>macromolecules. Proceedings of the National Academy of Sciences of the United States of America,<br>2019, 116, 22911-22911. | 7.1  | 4         |
| 59 | CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions. Nature Protocols, 2019, 14, 1-27.                                                                              | 12.0 | 98        |
| 60 | Temperature-Responsive Competitive Inhibition of CRISPR-Cas9. Molecular Cell, 2019, 73, 601-610.e5.                                                                                                                          | 9.7  | 67        |
| 61 | CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell, 2019, 176, 254-267.e16.                                                                                                             | 28.9 | 73        |
| 62 | CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature, 2019, 566, 218-223.                                                                                                                            | 27.8 | 346       |
| 63 | Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. ELife, 2019, 8, .                                                                                                                                          | 6.0  | 41        |
| 64 | CRISPR System: From Adaptive Immunity to Genome Editing. , 2019, , 81-116.                                                                                                                                                   |      | 0         |
| 65 | Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing. Journal of the American Chemical Society, 2018, 140, 6596-6603.                                                                  | 13.7 | 127       |
| 66 | CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360, 436-439.                                                                                                           | 12.6 | 2,355     |
| 67 | Programmable RNA recognition using a CRISPR-associated Argonaute. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3368-3373.                                                     | 7.1  | 41        |
| 68 | Genomes in Focus: Development and Applications of CRISPRâ€Cas9 Imaging Technologies. Angewandte<br>Chemie - International Edition, 2018, 57, 4329-4337.                                                                      | 13.8 | 67        |
| 69 | Genome im Fokus: Entwicklung und Anwendungen von CRISPR as9â€Bildgebungstechnologien.<br>Angewandte Chemie, 2018, 130, 4412-4420.                                                                                            | 2.0  | 7         |
| 70 | A Unified Resource for Tracking Anti-CRISPR Names. CRISPR Journal, 2018, 1, 304-305.                                                                                                                                         | 2.9  | 94        |
| 71 | Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, 362, 839-842.                                                                                                                                   | 12.6 | 757       |
| 72 | Systematic discovery of natural CRISPR-Cas12a inhibitors. Science, 2018, 362, 236-239.                                                                                                                                       | 12.6 | 174       |

JENNIFER A DOUDNA

| #  | Article                                                                                                                                                                                                                     | IF            | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 73 | Key role of the REC lobe during CRISPR–Cas9 activation by â€~sensing', â€~regulating', and â€~lockingâ<br>catalytic HNH domain. Quarterly Reviews of Biophysics, 2018, 51, .                                                | €™ the<br>5.7 | 79        |
| 74 | Disruption of the β1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner. Cancer Cell, 2018, 34, 513-528.e8.                                                        | 16.8          | 103       |
| 75 | CRISPR-Cas guides the future of genetic engineering. Science, 2018, 361, 866-869.                                                                                                                                           | 12.6          | 1,024     |
| 76 | RNA-dependent RNA targeting by CRISPR-Cas9. ELife, 2018, 7, .                                                                                                                                                               | 6.0           | 152       |
| 77 | The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key<br>Molecular Pathways in Neuropsychiatric Disorders. Cell, 2018, 174, 505-520.                                            | 28.9          | 108       |
| 78 | RNA Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a. Cell Reports, 2018, 24, 1025-1036.                                                                                                                 | 6.4           | 108       |
| 79 | Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Trends in Cancer, 2018, 4, 499-512.                                                                                                                | 7.4           | 89        |
| 80 | Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nature Biotechnology, 2017, 35, 431-434.                                                                      | 17.5          | 278       |
| 81 | RNA-based recognition and targeting: sowing the seeds of specificity. Nature Reviews Molecular Cell<br>Biology, 2017, 18, 215-228.                                                                                          | 37.0          | 167       |
| 82 | Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV<br>donor delivery. Nucleic Acids Research, 2017, 45, e98-e98.                                                               | 14.5          | 72        |
| 83 | High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding<br>and unbinding. Proceedings of the National Academy of Sciences of the United States of America, 2017,<br>114, 5461-5466. | 7.1           | 165       |
| 84 | RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes. Molecular Cell, 2017, 66, 373-383.e3.                                                                                                                | 9.7           | 229       |
| 85 | CRISPR–Cas9 Structures and Mechanisms. Annual Review of Biophysics, 2017, 46, 505-529.                                                                                                                                      | 10.0          | 1,289     |
| 86 | Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas<br>Immune Response. Molecular Cell, 2017, 65, 168-175.                                                                    | 9.7           | 47        |
| 87 | New CRISPR–Cas systems from uncultivated microbes. Nature, 2017, 542, 237-241.                                                                                                                                              | 27.8          | 471       |
| 88 | Cornerstones of CRISPR–Cas in drug discovery and therapy. Nature Reviews Drug Discovery, 2017, 16,<br>89-100.                                                                                                               | 46.4          | 370       |
| 89 | Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nature Biomedical Engineering, 2017, 1, 889-901.                                                                | 22.5          | 566       |
| 90 | The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry, 2017, 1, .                                                                                                                                       | 30.2          | 111       |

| #   | Article                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | CRISPR System: From Adaptive Immunity to Genome Editing. Molecular Frontiers Journal, 2017, 01, 76-91.                                                                | 1.1  | 0         |
| 92  | A Broad-Spectrum Inhibitor of CRISPR-Cas9. Cell, 2017, 170, 1224-1233.e15.                                                                                            | 28.9 | 211       |
| 93  | Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature, 2017, 550, 407-410.                                                                             | 27.8 | 901       |
| 94  | Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme. Nature Structural and<br>Molecular Biology, 2017, 24, 825-833.                            | 8.2  | 118       |
| 95  | Disabling Cas9 by an anti-CRISPR DNA mimic. Science Advances, 2017, 3, e1701620.                                                                                      | 10.3 | 289       |
| 96  | A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Science Advances, 2017, 3, eaao0027.                                                     | 10.3 | 211       |
| 97  | Structures of the CRISPR genome integration complex. Science, 2017, 357, 1113-1118.                                                                                   | 12.6 | 120       |
| 98  | CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing.<br>Nature Communications, 2017, 8, 2024.                           | 12.8 | 232       |
| 99  | Widespread Translational Remodeling during Human Neuronal Differentiation. Cell Reports, 2017, 21, 2005-2016.                                                         | 6.4  | 128       |
| 100 | A thermostable Cas9 with increased lifetime in human plasma. Nature Communications, 2017, 8, 1424.                                                                    | 12.8 | 142       |
| 101 | Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biology, 2017, 15, e2001882.                            | 5.6  | 104       |
| 102 | RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System. PLoS ONE, 2017, 12, e0170552.                                             | 2.5  | 81        |
| 103 | DNA recognition by an RNA-guided bacterial Argonaute. PLoS ONE, 2017, 12, e0177097.                                                                                   | 2.5  | 49        |
| 104 | Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. ELife, 2016, 5, .                                                                                 | 6.0  | 193       |
| 105 | Insights into HIV-1 proviral transcription from integrative structure and dynamics of the Tat:AFF4:P-TEFb:TAR complex. ELife, 2016, 5, .                              | 6.0  | 43        |
| 106 | CRISPR Immunological Memory Requires a Host Factor for Specificity. Molecular Cell, 2016, 62, 824-833.                                                                | 9.7  | 148       |
| 107 | A bacterial Argonaute with noncanonical guide RNA specificity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4057-4062. | 7.1  | 122       |
| 108 | Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nature Biotechnology,<br>2016, 34, 646-651.                                            | 17.5 | 180       |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Protecting genome integrity during CRISPR immune adaptation. Nature Structural and Molecular<br>Biology, 2016, 23, 876-883.                                                                      | 8.2  | 70        |
| 110 | Applications of CRISPR technologies in research and beyond. Nature Biotechnology, 2016, 34, 933-941.                                                                                             | 17.5 | 735       |
| 111 | Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature, 2016, 538, 270-273.                                                                          | 27.8 | 854       |
| 112 | DNA Targeting by a Minimal CRISPR RNA-Guided Cascade. Molecular Cell, 2016, 63, 840-851.                                                                                                         | 9.7  | 75        |
| 113 | Foreign DNA capture during CRISPR–Cas adaptive immunity. Nature, 2016, 534, S13-S14.                                                                                                             | 27.8 | 1         |
| 114 | ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nature Methods, 2016, 13, 1013-1020.                                                                      | 19.0 | 199       |
| 115 | A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary<br>Human T Cells. Cell Reports, 2016, 17, 1438-1452.                                        | 6.4  | 167       |
| 116 | Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nature Communications, 2016, 7, 12778.                                                               | 12.8 | 221       |
| 117 | Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering.<br>Cell, 2016, 164, 29-44.                                                                       | 28.9 | 889       |
| 118 | Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science, 2016, 351, 867-871.                                                                                                 | 12.6 | 512       |
| 119 | Programmable RNA Tracking in Live Cells with CRISPR/Cas9. Cell, 2016, 165, 488-496.                                                                                                              | 28.9 | 455       |
| 120 | Analog sensitive chemical inhibition of the <scp>DEAD</scp> â€box protein <scp>DDX</scp> 3. Protein Science, 2016, 25, 638-649.                                                                  | 7.6  | 14        |
| 121 | Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering. ACS Chemical Biology, 2016, 11, 681-688.                                                                             | 3.4  | 83        |
| 122 | Autoinhibitory Interdomain Interactions and Subfamily-specific Extensions Redefine the Catalytic Core of the Human DEAD-box Protein DDX3. Journal of Biological Chemistry, 2016, 291, 2412-2421. | 3.4  | 71        |
| 123 | Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress.<br>Oncotarget, 2016, 7, 28169-28182.                                                            | 1.8  | 62        |
| 124 | Tunable protein synthesis by transcript isoforms in human cells. ELife, 2016, 5, .                                                                                                               | 6.0  | 238       |
| 125 | Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies. ELife, 2016, 5, .                                                                                     | 6.0  | 36        |
| 126 | Genome editing: the end of the beginning. Genome Biology, 2015, 16, 292.                                                                                                                         | 8.8  | 15        |

| #   | Article                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Genome-editing revolution: My whirlwind year with CRISPR. Nature, 2015, 528, 469-471.                                                                                                | 27.8 | 36        |
| 128 | Expanding the Biologist's Toolkit with CRISPR-Cas9. Molecular Cell, 2015, 58, 568-574.                                                                                               | 9.7  | 351       |
| 129 | Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science, 2015, 348, 581-585.                                                                             | 12.6 | 126       |
| 130 | Get in LINE: Competition for Newly Minted Retrotransposon Proteins at the Ribosome. Molecular Cell, 2015, 60, 712-714.                                                               | 9.7  | 3         |
| 131 | Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science, 2015, 350, 823-826.                                                                                           | 12.6 | 301       |
| 132 | Dicer-TRBP Complex Formation Ensures Accurate Mammalian MicroRNA Biogenesis. Molecular Cell, 2015, 57, 397-407.                                                                      | 9.7  | 209       |
| 133 | Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity. Nature, 2015, 519, 193-198.                                                                               | 27.8 | 295       |
| 134 | Rational design of a split-Cas9 enzyme complex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2984-2989.                               | 7.1  | 255       |
| 135 | Genomic Engineering and the Future of Medicine. JAMA - Journal of the American Medical Association, 2015, 313, 791.                                                                  | 7.4  | 25        |
| 136 | The structural biology of CRISPR-Cas systems. Current Opinion in Structural Biology, 2015, 30, 100-111.                                                                              | 5.7  | 137       |
| 137 | Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10437-10442. | 7.1  | 600       |
| 138 | A Cas9–guide RNA complex preorganized for target DNA recognition. Science, 2015, 348, 1477-1481.                                                                                     | 12.6 | 463       |
| 139 | CRISPR germline engineering—the community speaks. Nature Biotechnology, 2015, 33, 478-486.                                                                                           | 17.5 | 110       |
| 140 | A prudent path forward for genomic engineering and germline gene modification. Science, 2015, 348, 36-38.                                                                            | 12.6 | 541       |
| 141 | Conformational control of DNA target cleavage by CRISPR–Cas9. Nature, 2015, 527, 110-113.                                                                                            | 27.8 | 514       |
| 142 | Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Molecular Cell, 2015, 60, 398-407.                                                                                    | 9.7  | 94        |
| 143 | Foreign DNA capture during CRISPR–Cas adaptive immunity. Nature, 2015, 527, 535-538.                                                                                                 | 27.8 | 169       |
| 144 | Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System. Cell, 2015, 163, 854-865.                                                                      | 28.9 | 177       |

| #   | Article                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2′,3′ cGAMP Signaling. Molecular Cell,<br>2015, 59, 891-903.                                                                      | 9.7  | 224       |
| 146 | Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends in Biochemical Sciences, 2015, 40, 58-66.                                                                 | 7.5  | 116       |
| 147 | Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery.<br>ELife, 2014, 3, e04766.                                                                  | 6.0  | 968       |
| 148 | RNA-guided assembly of Rev-RRE nuclear export complexes. ELife, 2014, 3, e03656.                                                                                                              | 6.0  | 81        |
| 149 | Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Research, 2014, 42, 1341-1353.                                                                        | 14.5 | 68        |
| 150 | The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346, 1258096.                                                                                                         | 12.6 | 4,828     |
| 151 | Preface. Methods in Enzymology, 2014, 546, xix-xx.                                                                                                                                            | 1.0  | 29        |
| 152 | New tools provide a second look at HDV ribozyme structure, dynamics and cleavage. Nucleic Acids Research, 2014, 42, 12833-12846.                                                              | 14.5 | 38        |
| 153 | Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation. Science, 2014, 343, 1247997.                                                                                  | 12.6 | 938       |
| 154 | CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6618-6623. | 7.1  | 206       |
| 155 | Insights into RNA structure and function from genome-wide studies. Nature Reviews Genetics, 2014, 15, 469-479.                                                                                | 16.3 | 384       |
| 156 | DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014, 507, 62-67.                                                                                                       | 27.8 | 1,573     |
| 157 | RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus. Molecular Cell, 2014, 56, 518-530.                                                                            | 9.7  | 267       |
| 158 | Evolutionarily Conserved Roles of the Dicer Helicase Domain in Regulating RNA Interference<br>Processing. Journal of Biological Chemistry, 2014, 289, 28352-28362.                            | 3.4  | 17        |
| 159 | Structure-Guided Reprogramming of Human cGAS Dinucleotide Linkage Specificity. Cell, 2014, 158, 1011-1021.                                                                                    | 28.9 | 111       |
| 160 | Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 2014, 516, 263-266.                                                                                                         | 27.8 | 533       |
| 161 | Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity.<br>Nature Structural and Molecular Biology, 2014, 21, 528-534.                                   | 8.2  | 389       |
| 162 | High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease<br>specificity. Nature Biotechnology, 2013, 31, 839-843.                                            | 17.5 | 1,303     |

JENNIFER A DOUDNA

| #   | Article                                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell, 2013, 154, 442-451.                                                                                                                                                                                                             | 28.9 | 3,012     |
| 164 | Structure and Activity of the RNA-Targeting Type III-B CRISPR-Cas Complex of Thermus thermophilus.<br>Molecular Cell, 2013, 52, 135-145.                                                                                                                                                                            | 9.7  | 212       |
| 165 | Rewriting a genome. Nature, 2013, 495, 50-51.                                                                                                                                                                                                                                                                       | 27.8 | 168       |
| 166 | Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression.<br>Cell, 2013, 152, 1173-1183.                                                                                                                                                                                       | 28.9 | 4,090     |
| 167 | RNA-programmed genome editing in human cells. ELife, 2013, 2, e00471.                                                                                                                                                                                                                                               | 6.0  | 1,830     |
| 168 | Substrate-specific structural rearrangements of human Dicer. Nature Structural and Molecular<br>Biology, 2013, 20, 662-670.                                                                                                                                                                                         | 8.2  | 89        |
| 169 | Molecular Mechanisms of RNA Interference. Annual Review of Biophysics, 2013, 42, 217-239.                                                                                                                                                                                                                           | 10.0 | 868       |
| 170 | Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic<br>Acids Research, 2013, 41, 6568-6576.                                                                                                                                                                           | 14.5 | 172       |
| 171 | Multiple sensors ensure guide strand selection in human RNAi pathways. Rna, 2013, 19, 639-648.                                                                                                                                                                                                                      | 3.5  | 107       |
| 172 | ATP-independent diffusion of double-stranded RNA binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 151-156.                                                                                                                                             | 7.1  | 62        |
| 173 | Hepatitis C virus 3′UTR regulates viral translation through direct interactions with the host<br>translation machinery. Nucleic Acids Research, 2013, 41, 7861-7874.                                                                                                                                                | 14.5 | 59        |
| 174 | RNA–protein analysis using a conditional CRISPR nuclease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5416-5421.                                                                                                                                                    | 7.1  | 71        |
| 175 | Defending the Genome: Regulatory RNA in Humans and Bacteria. FASEB Journal, 2013, 27, 450.1.                                                                                                                                                                                                                        | 0.5  | 0         |
| 176 | Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA. EMBO Journal, 2012, 31, 2824-2832.                                                                                                                                                                                                      | 7.8  | 90        |
| 177 | Native Tandem and Ion Mobility Mass Spectrometry Highlight Structural and Modular Similarities in<br>Clustered-Regularly-Interspaced Shot-Palindromic-Repeats (CRISPR)-associated Protein Complexes<br>From Escherichia coli and Pseudomonas aeruginosa. Molecular and Cellular Proteomics, 2012, 11,<br>1430-1441. | 3.8  | 74        |
| 178 | Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. Rna, 2012, 18, 661-672.                                                                                                                                                                                                              | 3.5  | 133       |
| 179 | TRBP alters human precursor microRNA processing in vitro. Rna, 2012, 18, 2012-2019.                                                                                                                                                                                                                                 | 3.5  | 118       |
| 180 | RNA processing enables predictable programming of gene expression. Nature Biotechnology, 2012, 30, 1002-1006.                                                                                                                                                                                                       | 17.5 | 184       |

| #   | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Coordinated Activities of Human Dicer Domains in Regulatory RNA Processing. Journal of Molecular<br>Biology, 2012, 422, 466-476.                                                                                                                    | 4.2  | 62        |
| 182 | Mechanism of Foreign DNA Selection in a Bacterial Adaptive Immune System. Molecular Cell, 2012, 46, 606-615.                                                                                                                                        | 9.7  | 229       |
| 183 | RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482, 331-338.                                                                                                                                                           | 27.8 | 1,584     |
| 184 | A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 2012, 337,<br>816-821.                                                                                                                                     | 12.6 | 12,811    |
| 185 | Preliminary in vitro functional analysis of the DEADâ€box protein DDX3. FASEB Journal, 2012, 26, 947.2.                                                                                                                                             | 0.5  | 0         |
| 186 | Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer<br>extension sequencing (SHAPE-Seq). Proceedings of the National Academy of Sciences of the United<br>States of America, 2011, 108, 11063-11068. | 7.1  | 346       |
| 187 | Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature, 2011, 477, 486-489.                                                                                                                                       | 27.8 | 355       |
| 188 | RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10092-10097.                          | 7.1  | 413       |
| 189 | Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nature Structural and Molecular Biology, 2011, 18, 529-536.                                                                                                                      | 8.2  | 498       |
| 190 | An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease<br>Cse3. Nature Structural and Molecular Biology, 2011, 18, 680-687.                                                                                  | 8.2  | 166       |
| 191 | Crystal Structure of the HCV IRES Central Domain Reveals Strategy for Start-Codon Positioning.<br>Structure, 2011, 19, 1456-1466.                                                                                                                   | 3.3  | 102       |
| 192 | Modeling and automation of sequencing-based characterization of RNA structure. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11069-11074.                                                             | 7.1  | 109       |
| 193 | Structural insights into RNA interference. Current Opinion in Structural Biology, 2010, 20, 90-97.                                                                                                                                                  | 5.7  | 73        |
| 194 | Functional Overlap between elF4G Isoforms in Saccharomyces cerevisiae. PLoS ONE, 2010, 5, e9114.                                                                                                                                                    | 2.5  | 50        |
| 195 | Substrate-Specific Kinetics of Dicer-Catalyzed RNA Processing. Journal of Molecular Biology, 2010, 404, 392-402.                                                                                                                                    | 4.2  | 126       |
| 196 | Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease. Science, 2010, 329, 1355-1358.                                                                                                                                            | 12.6 | 599       |
| 197 | Structural Basis for DNase Activity of a Conserved Protein Implicated in CRISPR-Mediated Genome Defense. Structure, 2009, 17, 904-912.                                                                                                              | 3.3  | 228       |
| 198 | A three-dimensional view of the molecular machinery of RNA interference. Nature, 2009, 457, 405-412.                                                                                                                                                | 27.8 | 651       |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Structural insights into RNA processing by the human RISC-loading complex. Nature Structural and<br>Molecular Biology, 2009, 16, 1148-1153.                                                      | 8.2  | 215       |
| 200 | Autoinhibition of Human Dicer by Its Internal Helicase Domain. Journal of Molecular Biology, 2008, 380, 237-243.                                                                                 | 4.2  | 195       |
| 201 | <i>In vitro</i> reconstitution of the human RISC-loading complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 512-517.                           | 7.1  | 385       |
| 202 | Getting the message: Mechanisms of protein synthesis initiation. FASEB Journal, 2008, 22, 247.1.                                                                                                 | 0.5  | 0         |
| 203 | Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Current Opinion in Structural Biology, 2007, 17, 138-145.                                                      | 5.7  | 217       |
| 204 | GTP-dependent Formation of a Ribonucleoprotein Subcomplex Required for Ribosome Biogenesis.<br>Journal of Molecular Biology, 2006, 356, 432-443.                                                 | 4.2  | 35        |
| 205 | Structural Basis for Double-Stranded RNA Processing by Dicer. Science, 2006, 311, 195-198.                                                                                                       | 12.6 | 860       |
| 206 | Structural Characterization and Identification of Postâ€Translational Modifications of Human<br>Eukaryotic Initiation Factor 3 (eIF3) by FTICR Mass Spectrometry. FASEB Journal, 2006, 20, A528. | 0.5  | 0         |
| 207 | Structural Basis for RNA Processing by Dicer. FASEB Journal, 2006, 20, A423.                                                                                                                     | 0.5  | 0         |
| 208 | Ribozyme catalysis: not different, just worse. Nature Structural and Molecular Biology, 2005, 12, 395-402.                                                                                       | 8.2  | 147       |
| 209 | Chemical biology at the crossroads of molecular structure and mechanism. Nature Chemical Biology, 2005, 1, 300-303.                                                                              | 8.0  | 15        |
| 210 | Protein–nucleic acid interactions: unlocking mysteries old and new. Current Opinion in Structural<br>Biology, 2005, 15, 65-67.                                                                   | 5.7  | 1         |
| 211 | An Essential GTPase Promotes Assembly of Preribosomal RNA Processing Complexes. Molecular Cell, 2005, 20, 633-643.                                                                               | 9.7  | 65        |
| 212 | Ro's Role in RNA Reconnaissance. Cell, 2005, 121, 495-496.                                                                                                                                       | 28.9 | 6         |
| 213 | A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature, 2004, 429, 201-205.                                                                                           | 27.8 | 266       |
| 214 | Structural Insights Into the Signal Recognition Particle. Annual Review of Biochemistry, 2004, 73, 539-557.                                                                                      | 11.1 | 123       |
| 215 | Protein–nucleic acid interactions. Current Opinion in Structural Biology, 2003, 13, 3-5.                                                                                                         | 5.7  | 7         |
| 216 | Structural Insights into Group II Intron Catalysis and Branch-Site Selection. Science, 2002, 295, 2084-2088.                                                                                     | 12.6 | 100       |

| #   | Article                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Structure and Function of the Eukaryotic Ribosome. Cell, 2002, 109, 153-156.                                                                                      | 28.9 | 123       |
| 218 | The chemical repertoire of natural ribozymes. Nature, 2002, 418, 222-228.                                                                                         | 27.8 | 656       |
| 219 | Direct pKaMeasurement of the Active-Site Cytosine in a Genomic Hepatitis Delta Virus Ribozyme.<br>Journal of the American Chemical Society, 2001, 123, 8447-8452. | 13.7 | 100       |
| 220 | The stem-loop binding protein forms a highly stable and specific complex with the $3\hat{a}\in^2$ stem-loop of histone mRNAs. Rna, 2001, 7, 123-132.              | 3.5  | 68        |
| 221 | Mechanism of ribosome recruitment by hepatitis C IRES RNA. Rna, 2001, 7, 194-206.                                                                                 | 3.5  | 329       |
| 222 | A universal mode of helix packing in RNA. Nature Structural Biology, 2001, 8, 339-343.                                                                            | 9.7  | 228       |
| 223 | Crystal Structure of the Ribonucleoprotein Core of the Signal Recognition Particle. Science, 2000, 287, 1232-1239.                                                | 12.6 | 369       |
| 224 | Ribozyme Structures and Mechanisms. Annual Review of Biochemistry, 2000, 69, 597-615.                                                                             | 11.1 | 168       |
| 225 | The P5abc Peripheral Element Facilitates Preorganization of the Tetrahymena Group I Ribozyme for Catalysis. Biochemistry, 2000, 39, 2639-2651.                    | 2.5  | 62        |
| 226 | A nested double pseudoknot is required for self-cleavage activity of both the genomic and antigenomic hepatitis delta virus ribozymes. Rna, 1999, 5, 720-727.     | 3.5  | 85        |
| 227 | Tertiary Motifs in RNA Structure and Folding. Angewandte Chemie - International Edition, 1999, 38, 2326-2343.                                                     | 13.8 | 393       |
| 228 | Assembly of an Exceptionally Stable RNA Tertiary Interface in a Group I Ribozyme. Biochemistry, 1999, 38,<br>2982-2990.                                           | 2.5  | 63        |
| 229 | RNA FOLDS: Insights from Recent Crystal Structures. Annual Review of Biophysics and Biomolecular Structure, 1999, 28, 57-73.                                      | 18.3 | 97        |
| 230 | Crystal structure of a hepatitis delta virus ribozyme. Nature, 1998, 395, 567-574.                                                                                | 27.8 | 747       |
| 231 | The P4â^'P6 Domain Directs Higher Order Folding of theTetrahymenaRibozyme Coreâ€. Biochemistry, 1997,<br>36, 3159-3169.                                           | 2.5  | 70        |
| 232 | A magnesium ion core at the heart of a ribozyme domain. Nature Structural Biology, 1997, 4, 553-558.                                                              | 9.7  | 281       |
| 233 | A molecular contortionist. Nature, 1997, 388, 830-831.                                                                                                            | 27.8 | 8         |
| 234 | Metal-binding sites in the major groove of a large ribozyme domain. Structure, 1996, 4, 1221-1229.                                                                | 3.3  | 246       |

| #   | Article                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Use of Cis- and Trans-Ribozymes to Remove 5' and 3' Heterogeneities From Milligrams of In Vitro Transcribed RNA. Nucleic Acids Research, 1996, 24, 977-978. | 14.5 | 173       |