Olivier de la BarriÃ"re

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1992081/publications.pdf

Version: 2024-02-01

840776 839539 19 322 11 18 citations h-index g-index papers 19 19 19 291 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Energy Losses in Soft Magnetic Materials Under Symmetric and Asymmetric Induction Waveforms. IEEE Transactions on Power Electronics, 2019, 34, 2655-2665.	7.9	44
2	Loss separation in soft magnetic composites. Journal of Applied Physics, 2011, 109, .	2.5	42
3	Alternating and Rotational Losses Up to Magnetic Saturation in Non-Oriented Steel Sheets. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	32
4	Prediction of Energy Losses in Soft Magnetic Materials Under Arbitrary Induction Waveforms and DC Bias. IEEE Transactions on Industrial Electronics, 2017, 64, 2522-2529.	7.9	31
5	An Analytical Model for the Computation of No-Load Eddy-Current Losses in the Rotor of a Permanent Magnet Synchronous Machine. IEEE Transactions on Magnetics, 2016, 52, 1-13.	2.1	29
6	Broadband Magnetic Losses in Fe-Si and Fe-Co Laminations. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	22
7	Semianalytical and Analytical Formulas for the Classical Loss in Granular Materials With Rectangular and Elliptical Grain Shapes. IEEE Transactions on Magnetics, 2014, 50, 1-8.	2.1	16
8	Rotational Magnetic Losses in Nonoriented Fe–Si and Fe–Co Laminations up to the kilohertz Range. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	15
9	Global Quantities Computation Using Mesh-Based Generated Reluctance Networks. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	14
10	A novel magnetizer for 2D broadband characterization of steel sheets and soft magnetic composites. International Journal of Applied Electromagnetics and Mechanics, 2015, 48, 239-245.	0.6	13
11	Skin effect in steel sheets under rotating induction. International Journal of Applied Electromagnetics and Mechanics, 2015, 48, 247-254.	0.6	11
12	A Simple Compensation Method for the Accurate Measurement of Magnetic Losses With a Single Strip Tester. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	11
13	1-D and 2-D Loss-Measuring Methods: Optimized Setup Design, Advanced Testing, and Results. IEEE Transactions on Magnetics, 2018, 54, 1-15.	2.1	11
14	Loss Prediction in DC-Biased Magnetic Sheets. IEEE Transactions on Magnetics, 2019, 55, 1-14.	2.1	8
15	Static and dynamic energy losses along different directions in GO steel sheets. Journal of Magnetism and Magnetic Materials, 2020, 500, 166281.	2.3	7
16	Anisotropy of Losses in Non-Oriented Iron Silicon Sheets: Influence on Electrical Machine Applications. IEEE Transactions on Magnetics, 2016, 52, 1-7.	2.1	6
17	Scalar Magnetic Potential Interpolation for Non-Conformal Meshing in Mesh-Based Generated Reluctance Networks. IEEE Transactions on Magnetics, 2019, 55, 1-8.	2.1	4
18	Anisotropy of losses in grain-oriented Fe–Si. AIP Advances, 2021, 11, .	1.3	4

#	Article	IF	CITATIONS
19	Effective versus standard Epstein loss figure in Fe-Si sheets. International Journal of Applied Electromagnetics and Mechanics, 2017, 55, 105-112.	0.6	2