Michel Boer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1991784/publications.pdf Version: 2024-02-01

MICHEL ROED

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	4.0	2,530
6	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
7	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
8	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
9	The European Photon Imaging Camera on XMM-Newton: The MOS cameras. Astronomy and Astrophysics, 2001, 365, L27-L35.	5.1	1,820
10	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
11	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
12	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
13	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	8.9	1,097
14	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
15	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
16	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
17	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
18	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898

#		IF	CITATIONS
19	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext> a€‰ a€‰stretchy="false">aŠ™</mml:mrow>. Physical Review</mml:math 	ml ma text>	< ກສສຜ ະກາsub
20	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
21	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
22	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 2017, 551, 67-70.	27.8	715
23	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
24	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
25	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
26	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
27	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
28	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
29	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
30	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
31	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
32	Detection of a \hat{I}^3 -ray burst of very long duration and very high energy. Nature, 1994, 372, 652-654.	27.8	412
33	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
34	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394
35	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
36	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	4.7	338

#	Article	IF	CITATIONS
37	Long-Term Intravenous Treatment of Pompe Disease With Recombinant Human α-Glucosidase From Milk. Pediatrics, 2004, 113, e448-e457.	2.1	326
38	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
39	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
40	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
41	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
42	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
43	Discovery of the short Î ³ -ray burst GRB 050709. Nature, 2005, 437, 855-858.	27.8	211
44	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
45	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	4.7	200
46	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
47	Global Characteristics of Xâ€Ray Flashes and Xâ€Ray–Rich Gammaâ€Ray Bursts Observed byHETEâ€2. Astrophysical Journal, 2005, 629, 311-327.	4.5	192
48	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	4.7	192
49	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
50	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
51	Summary Report on the ISOBM TD-4 Workshop: Analysis of 56 Monoclonal Antibodies against the MUC1 Mucin. Tumor Biology, 1998, 19, 1-20.	1.8	179
52	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
53	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
54	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156

#	Article	IF	CITATIONS
55	THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT?. Astrophysical Journal, 2013, 766, 30.	4.5	148
56	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
57	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
58	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
59	Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	142
60	Genotype-phenotype correlation in adult-onset acid maltase deficiency. Annals of Neurology, 1995, 38, 450-454.	5.3	140
61	The THESEUS space mission concept: science case, design and expected performances. Advances in Space Research, 2018, 62, 191-244.	2.6	133
62	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
63	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
64	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
65	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
66	The XMM-Newton Serendipitous Survey. Astronomy and Astrophysics, 2001, 365, L51-L59.	5.1	112
67	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
68	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
69	Spectral analysis of 35 GRBs/XRFs observed with HETE-2/FREGATE. Astronomy and Astrophysics, 2003, 400, 1021-1030.	5.1	103
70	High Energy Transient Explorer 2Observations of the Extremely Soft Xâ€Ray Flash XRF 020903. Astrophysical Journal, 2004, 602, 875-885.	4.5	103
71	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
72	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	4.7	102

#	Article	IF	CITATIONS
73	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
74	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
75	XMM-Newton observation of the distant (\$vec{z=0.6}\$) galaxy cluster RXÂJ1120.1+4318. Astronomy and Astrophysics, 2002, 390, 27-38.	5.1	97
76	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
77	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
78	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
79	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
80	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
81	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
82	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
83	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
84	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	5.1	84
85	Detection of a Very Bright Optical Flare from the Gamma-Ray Burst GRB 050904 at Redshift 6.29. Astrophysical Journal, 2006, 638, L71-L74.	4.5	82
86	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
87	A new type of repetitive behavior in a high-energy transient. Astrophysical Journal, 1987, 320, L111.	4.5	76
88	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
89	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
90	ls episialin/MUC1 involved in breast cancer progression?. Cancer Letters, 1995, 90, 27-33.	7.2	72

#	Article	IF	CITATIONS
91	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
92	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
93	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
94	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
95	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
96	Localization, time histories, and energy spectra of a new type of recurrent high-energy transient source. Astrophysical Journal, 1987, 320, L105.	4.5	69
97	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
98	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
99	THE ULTRA-LONG GRB 111209A. II. PROMPT TO AFTERGLOW AND AFTERGLOW PROPERTIES. Astrophysical Journal, 2013, 779, 66.	4.5	67
100	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
101	Scientific highlights of the HETE-2 mission. New Astronomy Reviews, 2004, 48, 423-430.	12.8	65
102	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
103	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
104	A high-statistics measurement of transverse spin effects in dihadron production from muon–proton semi-inclusive deep-inelastic scattering. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 736, 124-131.	4.1	64
105	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
106	EARLY OPTICAL OBSERVATIONS OF GAMMA-RAY BURSTS BY THE TAROT TELESCOPES: PERIOD 2001-2008. Astronomical Journal, 2009, 137, 4100-4108.	4.7	63
107	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
108	GRANDMA observations of advanced LIGO's and advanced Virgo's third observational campaign. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5518-5539.	4.4	63

#	Article	IF	CITATIONS
109	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	4.7	62
110	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
111	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	4.7	60
112	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
113	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
114	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
115	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
116	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59
117	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
118	THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Advances in Space Research, 2018, 62, 662-682.	2.6	56
119	HETEObservations of the Gammaâ€Ray Burst GRB 030329: Evidence for an Underlying Soft Xâ€Ray Component. Astrophysical Journal, 2004, 617, 1251-1257.	4.5	54
120	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54
121	The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3904-3927.	4.4	53
122	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
123	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
124	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
125	Stellar evolution through the ages: period variations in galactic RRab stars as derived from the GEOS database and TAROT telescopes. Astronomy and Astrophysics, 2007, 476, 307-316.	5.1	52
126	Intrinsic properties of a complete sample of <i>HETE</i> -2 gamma-ray bursts. Astronomy and Astrophysics, 2008, 491, 157-171.	5.1	49

#	Article	IF	CITATIONS
127	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
128	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
129	SMM hard X-ray observations of the soft gamma-ray repeater 1806-20. Astrophysical Journal, 1987, 322, L21.	4.5	47
130	Energy Release and Dissipation during Giant Solar Flares. Astrophysical Journal, 1995, 446, L47.	4.5	47
131	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
132	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
133	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46
134	The complex light curve of the afterglow of GRB071010A . Monthly Notices of the Royal Astronomical Society, 2008, 388, 347-356.	4.4	44
135	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
136	Continuous optical monitoring during the prompt emission of GRB 060111B. Astronomy and Astrophysics, 2006, 451, L39-L42.	5.1	43
137	The Search for Muon Neutrinos from Northern Hemisphere Gammaâ€Ray Bursts with AMANDA. Astrophysical Journal, 2008, 674, 357-370.	4.5	43
138	Capturing the electromagnetic counterparts of binary neutron star mergers through low-latency gravitational wave triggers. Monthly Notices of the Royal Astronomical Society, 2016, 459, 121-139.	4.4	43
139	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	4.7	43
140	The ULYSSES Supplement to the BATSE 3B Catalog of Cosmic Gammaâ€Ray Bursts. Astrophysical Journal, Supplement Series, 1999, 120, 399-408.	7.7	42
141	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
142	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	4.7	42
143	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1 1	0.784314	4 rgBT /Overla
144	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40

#	Article	IF	CITATIONS
145	HETEâ€2Localization and Observation of the Bright, Xâ€Ray–rich Gammaâ€Ray Burst GRB 021211. Astrophysical Journal, 2003, 599, 387-393.	4.5	40
146	All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. Physical Review D, 2022, 105, .	4.7	40
147	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	4.7	39
148	The XMM-Ω project. Astronomy and Astrophysics, 2003, 412, L37-L41.	5.1	39
149	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 921, 80.	4.5	39
150	PRE-DISCOVERY OBSERVATIONS OF CoRoT-1b AND CoRoT-2b WITH THE BEST SURVEY. Astronomical Journal, 2010, 139, 53-58.	4.7	37
151	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
152	Simultaneous event detection rates by electromagnetic and gravitational wave detectors in the advanced era of LIGO and Virgo. Monthly Notices of the Royal Astronomical Society, 2014, 437, 649-655.	4.4	36
153	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters. 2019. 122. 061104.</mml:math 	7.8	36
154	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35
155	ARE ULTRA-LONG GAMMA-RAY BURSTS DIFFERENT?. Astrophysical Journal, 2015, 800, 16.	4.5	35
156	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
157	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	7.8	35
158	The gamma-ray burst 050904: evidence for a termination shock?. Astronomy and Astrophysics, 2007, 462, 565-573.	5.1	34
159	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
160	XMM-Newton first-light observations of the Hickson galaxy group 16. Astronomy and Astrophysics, 2001, 365, L110-L115.	5.1	33
161	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>d</mml:mi> + Au collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:msub><mml:mi>smathyariant="italic">NN</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>200</mml:mn></mml:msqrt></mml:mrow></mml:math 	29 mî≻ <mml: <td>a3 mi ows∠/mmler</td></mml: 	a3 mi ows∠/mmler
162	, 62.4, 39, and 19.6 GeV. Physical Review C, 2017, 96, . Network synthesis localization of two soft gamma repeaters. Astrophysical Journal, 1994, 431, L31.	4.5	33

#	Article	IF	CITATIONS
163	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	33
164	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	4.5	33
165	Early re-brightening of the afterglow of GRBÂ050525a. Astronomy and Astrophysics, 2005, 439, L35-L38.	5.1	32
166	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>^î3</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.</mml:math 	7.8	32
167	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
168	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	8.3	32
169	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	5.1	32
170	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
171	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
172	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. Physical Review D, 2022, 105, .	4.7	31
173	14 Years of Experience With the Artificial Urinary Sphincter in Children and Adolescents Without Spina Bifida. Journal of Urology, 2006, 176, 1821-1825.	0.4	30
174	Robotic Observations of the Sky with TAROT: 2004–2007. Publications of the Astronomical Society of the Pacific, 2008, 120, 1298-1306.	3.1	30
175	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
176	A search for the radio counterpart to the 1994 March 1 gamma-ray burst. Astrophysical Journal, 1994, 437, L43.	4.5	30
177	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	4.7	29
178	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29
179	REVISITING COINCIDENCE RATE BETWEEN GRAVITATIONAL WAVE DETECTION AND SHORT GAMMA-RAY BURST FOR THE ADVANCED AND THIRD GENERATION. Astrophysical Journal, 2015, 799, 69.	4.5	29
180	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29

#	Article	IF	CITATIONS
181	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
182	A STEP: Towards a Large Photometric Survey for Exoplanets at DomeÂC. EAS Publications Series, 2007, 25, 225-232.	0.3	29
183	The Ulysses Supplement to the BATSE 4Br Catalog of Cosmic Gammaâ€Ray Bursts. Astrophysical Journal, Supplement Series, 1999, 122, 497-501.	7.7	29
184	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537–6910. Astrophysical Journal, 2021, 922, 71.	4.5	29
185	GRB 110205A: ANATOMY OF A LONG GAMMA-RAY BURST. Astrophysical Journal, 2012, 748, 59.	4.5	28
186	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
187	Multiplicities of charged pions and charged hadrons from deep-inelastic scattering of muons off an isoscalar target. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 764, 1-10.	4.1	28
188	GRB 010921: Localization and Observations by the [ITAL]High Energy Transient Explorer[/ITAL] Satellite. Astrophysical Journal, 2002, 571, L127-L130.	4.5	28
189	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.4	27
190	Early emission of rising optical afterglows: the case of GRB 060904B and GRB 070420. Astronomy and Astrophysics, 2008, 483, 847-855.	5.1	27
191	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 2022, 105, .	4.7	27
192	Stereoscopic Observations of Solar Hard Xâ€Ray Flares Made byUlyssesandYohkoh. Astrophysical Journal, 1998, 500, 1003-1008.	4.5	26
193	The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1111-1122.	4.4	26
194	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
195	Decay properties of the X-ray afterglows of gamma-ray bursts. Astronomy and Astrophysics, 2005, 430, 465-470.	5.1	24
196	Rapid searches for counterparts of GRB 930131. Astrophysical Journal, 1994, 422, L71.	4.5	24
197	The signe II gamma-ray burst experiment aboard the prognoz 9 satellite. Advances in Space Research, 1986, 6, 97-102.	2.6	23
198	Highâ€Energy Observations of XRF 030723: Evidence for an Offâ€Axis Gammaâ€Ray Burst?. Astrophysical Journal, 2005, 621, 884-893.	4.5	23

#	Article	IF	CITATIONS
199	The Zadko Telescope: A Southern Hemisphere Telescope for Optical Transient Searches, Multi-Messenger Astronomy and Education. Publications of the Astronomical Society of Australia, 2010, 27, 331-339.	3.4	23
200	INTERPLANETARY NETWORK LOCALIZATIONS OF KONUS SHORT GAMMA-RAY BURSTS. Astrophysical Journal, Supplement Series, 2013, 207, 38.	7.7	23
201	TAROT: Observing gamma-ray bursts "in progress― Astronomy and Astrophysics, 1999, 138, 579-580.	2.1	23
202	Generalized AA-amyloidosis in Siberian Tigers (<i>Panthera tigris altaica</i>) with Predominant Renal Medullary Amyloid Deposition. Veterinary Pathology, 1998, 35, 70-74.	1.7	22
203	A new algorithm for optical observations of space debris with the TAROT telescopes. Advances in Space Research, 2009, 44, 1270-1278.	2.6	22
204	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
205	Treatment of Post-Appendectomy Intra-Abdominal Deep Abscesses. European Journal of Pediatric Surgery, 2003, 13, 393-397.	1.3	21
206	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	4.0	21
207	Optical and X-ray early follow-up of ANTARES neutrino alerts. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 062-062.	5.4	21
208	Reverse Shock Emission Revealed in Early Photometry in the Candidate Short GRB 180418A. Astrophysical Journal, 2019, 881, 12.	4.5	21
209	TheXMM-Newton\$mathsf{Omega}\$ project. Astronomy and Astrophysics, 2005, 437, 31-38.	5.1	21
210	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	4.7	21
211	RTML – a standard for use of remote telescopes. Astronomy and Astrophysics, 2002, 395, 727-731.	5.1	20
212	THE ALL-SKY GEOS RR Lyr SURVEY WITH THE TAROT TELESCOPES: ANALYSIS OF THE BLAZHKO EFFECT. Astronomical Journal, 2012, 144, 39.	4.7	20
213	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20
214	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	4.0	20
215	The TAROT Suspected Variable Star Catalog. Astronomical Journal, 2007, 133, 1470-1477.	4.7	19
216	TAROT: Robotic observatories for gammaâ€ray bursts and other sources. Astronomische Nachrichten, 2008, 329, 275-277.	1.2	19

#	Article	IF	CITATIONS
217	EDGE: Explorer of diffuse emission and gamma-ray burst explosions. Experimental Astronomy, 2009, 23, 67-89.	3.7	19
218	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19
219	Gammaâ€Ray Burst Arrivalâ€Time Localizations: Simultaneous Observations byUlysses,Pioneer Venus Orbiter, SIGMA, WATCH, and PHEBUS. Astrophysical Journal, 2000, 533, 884-889.	4.5	19
220	Gammaâ€Ray Burst Arrival Time Localizations: Simultaneous Observations by Mars Observer , Compton Gamma Ray Observatory , and Ulysses. Astrophysical Journal, Supplement Series, 1997, 110, 157-161.	7.7	19
221	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	19
222	Gammaâ€Ray Burst Arrival Time Localizations: Simultaneous Observations by Pioneer Venus Orbiter , Compton Gamma ―Ray Observatory , and Ulysses. Astrophysical Journal, Supplement Series, 1998, 118, 391-399.	7.7	18
223	THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BURST AND TRANSIENT SOURCE EXPERIMENT 5B CATALOG OF COSMIC GAMMA-RAY BURSTS. Astrophysical Journal, Supplement Series, 2011, 196, 1.	7.7	18
224	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
225	Third Interplanetary Network Localization, Time History, Fluence, Peak Flux, and Distance Lower Limit of the 1997 February 28 Gamma-Ray Burst. Astrophysical Journal, 1997, 485, L1-L3.	4.5	18
226	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D, 2022, 105, .	4.7	18
227	Testing gamma-ray burst models with the afterglow of GRB 090102. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	17
228	Spectral-Lag Relations in GRB Pulses Detected with HETE-2. Publication of the Astronomical Society of Japan, 2010, 62, 487-499.	2.5	17
229	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
230	Status of CNES optical observations of space debris in geostationary orbit. Advances in Space Research, 2004, 34, 1143-1149.	2.6	16
231	XIPE: the x-ray imaging polarimetry explorer. , 2016, , .		16
232	Are Abell Clusters Correlated with Gamma-Ray Bursts?. Astrophysical Journal, 1997, 479, L113-L115.	4.5	16
233	The Hardness-Intensity Correlation in Bright Gamma-Ray Bursts. Astrophysical Journal, 1997, 490, L17-L20.	4.5	16
234	Constraining the rate of GRB visible afterglows with the CFHTLS very wide survey. Astronomy and Astrophysics, 2007, 464, L29-L32.	5.1	15

#	Article	IF	CITATIONS
235	Xâ€Ray Afterglow Light Curves: Toward A Standard Candle?. Astrophysical Journal, 2008, 683, 620-629.	4.5	15
236	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	4.5	15
237	A multiwavelength study of Swift GRB 060111B constraining the origin of its prompt optical emission. Astronomy and Astrophysics, 2009, 503, 783-795.	5.1	14
238	Towards an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 415, L26-L30.	3.3	14
239	A robotic telescope network for space debris identification and tracking. Advances in Space Research, 2011, 47, 402-410.	2.6	14
240	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
241	Observational constraints on the afterglow of GRB 020531. Astronomy and Astrophysics, 2003, 404, 815-818.	5.1	14
242	The TAROT observatory data management. Astronomy and Astrophysics, 1999, 138, 581-582.	2.1	13
243	<title>EPIC system onboard the ESA XMM</title> . , 1996, , .		12
244	In-Flight Performance and First Results of FREGATE. AIP Conference Proceedings, 2003, , .	0.4	12
245	OBSERVATION OF CORRELATED OPTICAL AND GAMMA EMISSIONS FROM GRB 081126. Astrophysical Journal, 2009, 697, L18-L21.	4.5	12
246	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
247	Possible Association of a Quiescent X-Ray Source with a Gamma-Ray Burster. Astrophysical Journal, 1996, 464, 342.	4.5	12
248	HETEâ€⊋Observation of Two Gammaâ€Ray Bursts atz> 3. Astrophysical Journal, 2005, 626, 292-297.	4.5	12
249	A model for soft γ-ray burst repeaters. Nature, 1989, 337, 716-718.	27.8	11
250	Monoclonal Antibodies against the Nonmucin Domain of MUC1/Episialin. Tumor Biology, 1998, 19, 67-70.	1.8	11
251	A VARIABLE STAR CENSUS IN A PERSEUS FIELD. Astronomical Journal, 2011, 142, 114.	4.7	11
252	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	4.0	11

#	Article	IF	CITATIONS
253	Can we quickly flag ultra-long gamma-ray bursts?. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2471-2476.	4.4	11
254	The presence of an additional fetal membrane and its function in the newborn guanaco (). Theriogenology, 1988, 30, 437-439.	2.1	10
255	An Optically Dark GRB Observed by HETE-2: GRB 051022. Publication of the Astronomical Society of Japan, 2006, 58, L35-L39.	2.5	10
256	X-ray flashes or soft gamma-ray bursts?. Astronomy and Astrophysics, 2007, 461, 485-492.	5.1	10
257	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	4.0	10
258	THE INTERPLANETARY NETWORK SUPPLEMENT TO THE <i>HETE-2</i> GAMMA-RAY BURST CATALOG. Astrophysical Journal, Supplement Series, 2011, 197, 34.	7.7	9
259	The detection efficiency of on-axis short gamma-ray burst optical afterglows triggered by aLIGO/Virgo. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3575-3580.	4.4	9
260	MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS. Astrophysical Journal Letters, 2016, 820, L24.	8.3	9
261	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
262	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.4	9
263	THE PREVALENCE AND TRANSMISSION TO EXOTIC EQUIDS (EQUUS AFRICANUS) OF INTESTINAL NEMATODES IN CONTAMINATED PASTURE IN TWO WILD ANIMAL PARKS. Journal of Zoo and Wildlife Medicine, 2001, 32, 209-216.	0.6	8
264	FAVOR (FAst Variability Optical Registration) - two-telescope complex for detection and investigation of short optical transients. Astronomische Nachrichten, 2004, 325, 677-677.	1.2	7
265	Gamma-ray burst afterglows: luminosity clustering at infrared wavelengths?. Astronomy and Astrophysics, 2008, 492, L1-L4.	5.1	7
266	The Influence of a Multi-disciplinary Meeting for Quality Assurance on Target Delineation in Radiotherapy Treatment Preparation. International Journal of Radiation Oncology Biology Physics, 2009, 75, S452-S453.	0.8	7
267	THE INTERPLANETARY NETWORK SUPPLEMENT TO THE <i>BeppoSAX</i> GAMMA-RAY BURST CATALOGS. Astrophysical Journal, Supplement Series, 2010, 191, 179-184.	7.7	7
268	Observing the prompt emission of GRBs. Comptes Rendus Physique, 2011, 12, 255-266.	0.9	7
269	The Zadko telescope: A resource for science education enrichment. Advances in Space Research, 2011, 47, 1922-1930.	2.6	7
270	Tests with a Carlina-type diluted telescope. Astronomy and Astrophysics, 2012, 539, A59.	5.1	7

#	Article	IF	CITATIONS
271	A Study of GRBs with Low-luminosity Afterglows. Astrophysical Journal, 2017, 850, 117.	4.5	7
272	Modeling the Prompt Optical Emission of GRB 180325A: The Evolution of a Spike from the Optical to Gamma Rays. Astrophysical Journal, 2021, 908, 39.	4.5	7
273	Limits on the early afterglow phase of gamma-ray burst sources from TAROT-1. Astronomy and Astrophysics, 2001, 378, 76-81.	5.1	7
274	The optical and X-ray content of the 1992 May 1 gamma-ray burst error box. Astrophysical Journal, Supplement Series, 1994, 92, 655.	7.7	7
275	No Evidence for Gammaâ€Ray Burst/Abell Cluster or Gammaâ€Ray Burst/Radioâ€quiet Quasar Correlations. Astrophysical Journal, 1999, 515, 497-499.	4.5	6
276	Agile telescopes to monitor optical transients and sky variability: From TAROT to ARAGO. Astronomische Nachrichten, 2001, 322, 343-346.	1.2	6
277	The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 567, 327-332.	1.6	6
278	ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.	3.7	6
279	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
280	Polioencephalomalacia in Captive Harbour Seals (Phoca vitulina). Transboundary and Emerging Diseases, 2003, 50, 145-150.	0.6	5
281	HETE-2 Localization and Observations of the Gamma-Ray Burst GRB 020813. Publication of the Astronomical Society of Japan, 2005, 57, 1031-1039.	2.5	5
282	HETE-2 Observations of the X-Ray Flash XRF 040916. Publication of the Astronomical Society of Japan, 2007, 59, 695-702.	2.5	5
283	EDGE: explorer of diffuse emission and gamma-ray burst explosions. , 2007, , .		5
284	Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 692, 184-187.	1.6	5
285	The Zadko Telescope: Exploring the Transient Universe. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	5
286	The CFHTLS real time analysis system: "optically selected GRB afterglows― Astronomy and Astrophysics, 2006, 459, 465-475.	5.1	5
287	The peak flux distribution of bright gamma-ray bursts measured with ULYSSES. Astronomy and Astrophysics, 1999, 138, 421-422.	2.1	5
288	Ulysses observations of cosmic gamma-ray bursts. Astrophysics and Space Science, 1995, 231, 227-230.	1.4	4

#	Article	IF	CITATIONS
289	Algorithms improvement in image processing for optical observations of artificial objects in geostationary orbit with the TAROT telescopes. , 2008, , .		4
290	CADOR and TAROT: a virtual observatory. Proceedings of SPIE, 2008, , .	0.8	4
291	The TAROT archive: rising afterglows. , 2009, , .		4
292	GRB 141221A: gone is the wind. Monthly Notices of the Royal Astronomical Society, 2016, 459, 508-516.	4.4	4
293	Limits on the Electromagnetic Counterpart of Binary Black Hole Coalescence at Visible Wavelengths. Astrophysical Journal, 2019, 886, 73.	4.5	4
294	Preliminary results of optical searches of IPN3 localizations. Astrophysics and Space Science, 1995, 231, 289-292.	1.4	3
295	The CESR multi-mission radiation monitor. IEEE Transactions on Nuclear Science, 1995, 42, 2010-2016.	2.0	3
296	[ITAL]ROSAT[/ITAL] Detection and High-Precision Localization of X-Ray Sources in the 1978 November 19 Gamma-Ray Burst Error Box. Astrophysical Journal, 1997, 481, L39-L41.	4.5	3
297	Scientific highlights of the HETE-2 mission. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 279-288.	0.4	3
298	Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A. Galaxies, 2017, 5, 6.	3.0	3
299	DDOTI: the deca-degree optical transient imager. Proceedings of SPIE, 2016, , .	0.8	3
300	The HUS solar flare and cosmic gamma-ray burst detector aboard the ULYSSES spacecraft. Astrophysics and Space Science, 1990, 171, 323-327.	1.4	2
301	Versatile scheduler for automatic telescopes. , 2002, 4844, 262.		2
302	The Polychromatic Laser Guide Star for tilt measurement: progress report of the demonstrator at Observatoire de Haute Provence. , 2007, 6691, 197.		2
303	X-ray afterglow light curves: toward a standard candle?. AIP Conference Proceedings, 2008, , .	0.4	2
304	Robotic Telescopes as Science Tools. , 2010, , .		2
305	The puzzling temporally variable optical and X-ray afterglow of GRB 101024A. Astronomy and Astrophysics, 2011, 530, A74.	5.1	2
306	Fast response electromagnetic follow-ups from low latency GW triggers. Journal of Physics: Conference Series, 2016, 716, 012009.	0.4	2

#	Article	IF	CITATIONS
307	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
308	AROSATDeep Survey of Four Small Gammaâ€Ray Burst Error Boxes. Astrophysical Journal, 1999, 524, 92-97.	4.5	2
309	Immune modulating activity of tiflamizole. International Journal of Immunopharmacology, 1985, 7, 396.	1.1	1
310	EXOSAT observations of two gamma-ray burst sources. Advances in Space Research, 1986, 6, 65-68.	2.6	1
311	The results of the MIR-KVANT in 1987–1989. Advances in Space Research, 1991, 11, 5-16.	2.6	1
312	Comparison of watch and IPN locations of gamma-ray bursts. AIP Conference Proceedings, 1994, , .	0.4	1
313	The Ulysses supplement to the BATSE 3B catalog. AIP Conference Proceedings, 1996, , .	0.4	1
314	The TAROT project: An optical glance at GRBs. AlP Conference Proceedings, 1996, , .	0.4	1
315	Verifying the accuracy of the third interplanetary network: Localization of the bursting pulsar GRO J1744-28 by triangulation. Advances in Space Research, 1998, 22, 1125-1128.	2.6	1
316	TAROT: A status report. , 1998, , .		1
317	High-energy transient explorer-2. AIP Conference Proceedings, 2000, , .	0.4	1
318	Flexible Automatic Scheduling for Autonomous Telescopes: The MAJORDOME. Experimental Astronomy, 2001, 12, 33-48.	3.7	1
319	Steps towards the development of an automatic classifier for astronomical sources. , 2002, , .		1
320	First Year Operations of the HETE Burst Alert Network. AIP Conference Proceedings, 2003, , .	0.4	1
321	Three-reflections telescope proposal as flat-field anastigmat for wide field observations at Dome C. EAS Publications Series, 2005, 14, 325-330.	0.3	1
322	The ECLAIRs micro-satellite for multi-wavelength studies of gamma-ray burst prompt emission. IEEE Transactions on Nuclear Science, 2005, 52, 2778-2785.	2.0	1
323	ELP-OA : status report of the setup of the demonstrator of the polychromatic laser guide star at Observatoire de Haute Provence. Proceedings of SPIE, 2008, , .	0.8	1
324	Setting up ELP-OA: the polychromatic laser guide star demonstrator. Proceedings of SPIE, 2010, , .	0.8	1

#	Article	IF	CITATIONS
325	Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 626-627, S183-S184.	1.6	1
326	RAPID OPTICAL FOLLOW-UP OBSERVATIONS OF GAMMA-RAY BURSTS. International Journal of Modern Physics Conference Series, 2012, 12, 48-57.	0.7	1
327	National Aures Observatory: A new multimessenger facility. Journal of Physics: Conference Series, 2019, 1269, 012001.	0.4	1
328	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
329	X-ray observations of gamma-ray burst sources. Astrophysics and Space Science, 1990, 169, 153-158.	1.4	0
330	Search for gamma-ray burst quiescent counterparts in the ROSAT all-sky survey data. AIP Conference Proceedings, 1991, , .	0.4	0
331	Combined fitting of Ulysses/COMPTEL GRB spectra. Astrophysics and Space Science, 1995, 231, 165-168.	1.4	0
332	Search for repeating classical bursts with the interplanetary network. AIP Conference Proceedings, 1996, , .	0.4	0
333	GRB localizations from BATSE, Mars Observer, and Ulysses Observations. AIP Conference Proceedings, 1996, , .	0.4	0
334	Gross spectral differences between bright and very bright gamma-ray bursts. AIP Conference Proceedings, 1996, , .	0.4	0
335	Gamma-ray bursts: how to find their distance?. Nuclear Physics, Section B, Proceedings Supplements, 1998, 60, 59-68.	0.4	0
336	Verifying the IPN accuracy with the Bursting Pulsar and SGR1806-20. , 1998, , .		0
337	The Ulysses supplement to the BATSE 4B catalog. , 1998, , .		0
338	Preliminary results from the TAROT experiment. AIP Conference Proceedings, 2000, , .	0.4	0
339	Early Results from HETE-2. International Astronomical Union Colloquium, 2001, 183, 149-154.	0.1	0
340	ARAGO: a robotic observatrory for the variable sky. , 2002, 4836, 138.		0
341	Advanced Telerobotic Field Spectrometer. , 0, , 36-41.		0
342	HETE-2 Observations of Gamma-Ray Bursts and Their Follow-Ups. Progress of Theoretical Physics Supplement, 2004, 155, 279-286.	0.1	0

#	Article	IF	CITATIONS
343	The ECLAIRs micro-satellite for multi-wavelength studies of gamma-ray burst prompt emission. , 0, , .		0
344	In-flight Calibration of the HETE-2 WXM Detector Response. AIP Conference Proceedings, 2004, , .	0.4	0
345	Observation of the prompt and early afterglow of GRB 050904 by TAROT. AIP Conference Proceedings, 2006, , .	0.4	0
346	Searching for early optical transients of gamma-ray bursts with TAROT. Technical status. AIP Conference Proceedings, 2006, , .	0.4	0
347	Near Infrared monitoring of the afterglow of the very bright Swift burst GRB 050525. AIP Conference Proceedings, 2006, , .	0.4	0
348	The true redshift distribution of Pre-SWIFT gamma-ray bursts. AIP Conference Proceedings, 2006, , .	0.4	0
349	Current and future activities in education and public outreach at the Observatoire de Haute Provence. Advances in Space Research, 2008, 42, 1831-1836.	2.6	0
350	Constraining the rate of GRB visible afterglows with the CFHTLS very wide survey. AIP Conference Proceedings, 2008, , .	0.4	0
351	The Standard Model of GRBs at Face with GRB 090102A. , 2010, , .		0
352	A Correlated Optical and Gamma Emission from GRB 081126A. , 2010, , .		0
353	The origin of the prompt optical emission in GRB 060111B. Advances in Space Research, 2011, 47, 1413-1415.	2.6	0
354	The TAROT CCD Camera. Astrophysics and Space Science Library, 2000, , 339-343.	2.7	0
355	New concept of small satellite, HETE-2 and its sci , 2005, , .		0
356	ELP-OA: status report of the setup of the demonstrator of the Polychromatic Laser Guide Star at Observatoire de Haute-Provence. , 2010, , .		0
357	Testing for a class of ULGRBs using Swift CRBs. , 2015, , .		0
358	10 years of XRT light curves: a general view of the X-ray afterglow. , 2015, , .		0
359	Image processing improvement for optical observations of space debris with the TAROT telescopes. , 2016, , .		0