
Songjie Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1991530/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Rh(III)- and Ir(III)-Catalyzed C–H Alkynylation of Arenes under Chelation Assistance. Journal of the American Chemical Society, 2014, 136, 4780-4787.	13.7	389
2	Rhodium-Catalyzed C–H Activation of Phenacyl Ammonium Salts Assisted by an Oxidizing C–N Bond: A Combination of Experimental and Theoretical Studies. Journal of the American Chemical Society, 2015, 137, 1623-1631.	13.7	314
3	Transition metal-catalysed couplings between arenes and strained or reactive rings: combination of C–H activation and ring scission. Chemical Society Reviews, 2016, 45, 6462-6477.	38.1	305
4	Anthranil: An Aminating Reagent Leading to Bifunctionality for Both C(sp ³)â~'H and C(sp ²)â~'H under Rhodium(III) Catalysis. Angewandte Chemie - International Edition, 2016, 55, 8696-8700.	13.8	193
5	Co(III)-Catalyzed Synthesis of Quinazolines via C–H Activation of <i>N</i> -Sulfinylimines and Benzimidates. Organic Letters, 2016, 18, 1306-1309.	4.6	171
6	Rhodium(III)-Catalyzed Azacycle-Directed Intermolecular Insertion of Arene C–H Bonds into α-Diazocarbonyl Compounds. Journal of Organic Chemistry, 2013, 78, 5444-5452.	3.2	159
7	Redox-Neutral Couplings between Amides and Alkynes via Cobalt(III)-Catalyzed C–H Activation. Organic Letters, 2016, 18, 588-591.	4.6	145
8	Cobalt-Catalyzed Asymmetric Hydroboration/Cyclization of 1,6-Enynes with Pinacolborane. Journal of the American Chemical Society, 2017, 139, 6526-6529.	13.7	144
9	Rhodium(III)-Catalyzed Coupling of Arenes with Cyclopropanols via C–H Activation and Ring Opening. ACS Catalysis, 2016, 6, 647-651.	11.2	137
10	Access to Structurally Diverse Quinoline-Fused Heterocycles via Rhodium(III)-Catalyzed C–C/C–N Coupling of Bifunctional Substrates. Organic Letters, 2016, 18, 2812-2815.	4.6	128
11	Rhodium(III)-Catalyzed C–C Coupling of Arenes with 2-Vinyloxiranes: Synthesis of Allylic Alcohols. Organic Letters, 2014, 16, 1200-1203.	4.6	123
12	Cooperative Co(III)/Cu(II)-Catalyzed C–N/N–N Coupling of Imidates with Anthranils: Access to 1 <i>H</i> -Indazoles via C–H Activation. Organic Letters, 2016, 18, 3662-3665.	4.6	123
13	Rhodium(III)-Catalyzed C–H Activation and Amidation of Arenes Using <i>N</i> -Arenesulfonated Imides as Amidating Reagents. Organic Letters, 2013, 15, 3706-3709.	4.6	122
14	Rh(III)-Catalyzed Synthesis of <i>N</i> -Unprotected Indoles from Imidamides and Diazo Ketoesters via C–H Activation and C–C/C–N Bond Cleavage. Organic Letters, 2016, 18, 700-703.	4.6	122
15	Nitrone Directing Groups in Rhodium(III)â€Catalyzed Câ^'H Activation of Arenes: 1,3â€Dipoles versus Traceless Directing Groups. Angewandte Chemie - International Edition, 2016, 55, 15351-15355.	13.8	119
16	Rh(III)-Catalyzed Oxidative Annulation of 2-Phenylimidazo[1,2- <i>a</i>]pyridines with Alkynes: Mono versus Double C–H Activation. Journal of Organic Chemistry, 2015, 80, 3471-3479.	3.2	117
17	Rh(III)-Catalyzed Selenylation of Arenes with Selenenyl Chlorides/Diselenides via C–H Activation. Organic Letters, 2015, 17, 58-61.	4.6	115
18	Cobalt(III)-Catalyzed C–C Coupling of Arenes with 7-Oxabenzonorbornadiene and 2-Vinyloxirane via C–H Activation. Organic Letters, 2016, 18, 3802-3805.	4.6	111

Songjie Yu

#	Article	IF	CITATIONS
19	Rh(III)-Catalyzed C–H Alkylation of Arenes Using Alkylboron Reagents. Organic Letters, 2015, 17, 2812-2815.	4.6	107
20	Mild Synthesis of Chalcones via Rhodium(III)-Catalyzed C–C Coupling of Arenes and Cyclopropenones. Organic Letters, 2014, 16, 1220-1223.	4.6	91
21	Cobalt-catalyzed regioselective stereoconvergent Markovnikov 1,2-hydrosilylation of conjugated dienes. Chemical Science, 2018, 9, 973-978.	7.4	87
22	Rh(III)-Catalyzed C–C/C–N Coupling of Imidates with α-Diazo Imidamide: Synthesis of Isoquinoline-Fused Indoles. Organic Letters, 2016, 18, 2914-2917.	4.6	84
23	Rhodium(III)-Catalyzed Mild Alkylation of (Hetero)Arenes with Cyclopropanols via C–H Activation and Ring Opening. Journal of Organic Chemistry, 2016, 81, 4869-4875.	3.2	80
24	1,3â€Difunctionalizations of [1.1.1]Propellane via 1,2â€Metallate Rearrangements of Boronate Complexes. Angewandte Chemie - International Edition, 2020, 59, 3917-3921.	13.8	80
25	Copper-catalyzed asymmetric hydroboration of 1,3-enynes with pinacolborane to access chiral allenylboronates. Organic Chemistry Frontiers, 2018, 5, 1284-1287.	4.5	76
26	Cobalt(iii)-catalyzed efficient synthesis of indenones through carboannulation of benzoates and alkynes. Organic Chemistry Frontiers, 2016, 3, 813-816.	4.5	69
27	Enantioselective Copperâ€Catalyzed Alkylation of Quinoline <i>N</i> â€Oxides with Vinylarenes. Angewandte Chemie - International Edition, 2017, 56, 15896-15900.	13.8	61
28	Synthesis of 2â€Substituted Quinolines <i>via</i> Rhodium(III)â€Catalyzed C–H Activation of Imidamides and Coupling with Cyclopropanols. Advanced Synthesis and Catalysis, 2017, 359, 1620-1625.	4.3	59
29	Mild Acylation of C(sp ³)–H and C(sp ²)–H Bonds under Redox-Neutral Rh(III) Catalysis. ACS Catalysis, 2016, 6, 7744-7748.	11.2	57
30	Iridium―and Rhodiumâ€Catalyzed Carbocyclization between 2â€Phenylimidazo[1,2â€ <i>a</i>]pyridine and αâ€Diazo Esters. Advanced Synthesis and Catalysis, 2016, 358, 880-886.	4.3	55
31	Rhodium(III)-Catalyzed Redox-Neutral C–H Arylation via Rearomatization. Organic Letters, 2014, 16, 1586-1589.	4.6	51
32	Catalytic asymmetric synthesis of chiral trisubstituted heteroaromatic allenes from 1,3-enynes. Communications Chemistry, 2018, 1, .	4.5	43
33	Anthranil: An Aminating Reagent Leading to Bifunctionality for Both C(sp ³)â^'H and C(sp ²)â^'H under Rhodium(III) Catalysis. Angewandte Chemie, 2016, 128, 8838-8842.	2.0	41
34	Methylenespiro[2.3]hexanes via Nickel-Catalyzed Cyclopropanations with [1.1.1]Propellane. Journal of the American Chemical Society, 2019, 141, 20325-20334.	13.7	34
35	Rh(III)-catalyzed coupling of nitrones with alkynes for the synthesis of indolines. Chinese Journal of Catalysis, 2015, 36, 925-932.	14.0	27
36	Redox-Neutral Access to Isoquinolinones via Rhodium(III)-Catalyzed Annulations of <i>O</i> -Pivaloyl Oximes with Ketenes. Organic Letters, 2018, 20, 2698-2701.	4.6	27

Songjie Yu

#	Article	IF	CITATIONS
37	1,3â€Difunctionalizations of [1.1.1]Propellane via 1,2â€Metallate Rearrangements of Boronate Complexes. Angewandte Chemie, 2020, 132, 3945-3949.	2.0	25
38	Rhodium(III)-catalyzed [3+2] annulative coupling between oximes and electron-deficient alkynes. Science China Chemistry, 2015, 58, 1297-1301.	8.2	24
39	Rhodium(III)-catalyzed selective access to isoindolinones via formal [4 + 1] annulation of arylamides and propargyl alcohols. Chinese Journal of Catalysis, 2017, 38, 1390-1398.	14.0	24
40	Cobalt-Catalyzed Fluoroallyllation of Carbonyls via C–C Activation of <i>gem</i> -Difluorocyclopropanes. Organic Letters, 2022, 24, 5051-5055.	4.6	24
41	Nitrone Directing Groups in Rhodium(III)â€Catalyzed Câ~'H Activation of Arenes: 1,3â€Dipoles versus Traceless Directing Groups. Angewandte Chemie, 2016, 128, 15577-15581.	2.0	23
42	lridium-Catalyzed Enantioselective Synthesis of α-Chiral Bicyclo[1.1.1]pentanes by 1,3-Difunctionalization of [1.1.1]Propellane. Organic Letters, 2020, 22, 5650-5655.	4.6	23
43	Enantioselective Copperâ€Catalyzed Alkylation of Quinoline <i>N</i> â€Oxides with Vinylarenes. Angewandte Chemie, 2017, 129, 16112-16116.	2.0	19
44	Palladium atalyzed Stagewise Strainâ€Releaseâ€Driven Câ^'C Activation of Bicyclo[1.1.1]pentanyl Alcohols. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
45	Front Cover Picture: Synthesis of 2â€Substituted Quinolines <i>via</i> Rhodium(III)â€Catalyzed C–H Activation of Imidamides and Coupling with Cyclopropanols (Adv. Synth. Catal. 10/2017). Advanced Synthesis and Catalysis, 2017, 359, 1599-1599.	4.3	2
46	Palladium atalyzed Stagewise Strainâ€Releaseâ€Driven C Activation of Bicyclo[1.1.1]pentanyl Alcohols. Angewandte Chemie, 0, , .	2.0	0