Fernando Valiente-Echeverria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1991225/publications.pdf Version: 2024-02-01

Fernando

#	Article	lF	CITATIONS
1	Safety and Immunogenicity of an Inactivated Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine in a Subgroup of Healthy Adults in Chile. Clinical Infectious Diseases, 2022, 75, e792-e804.	5.8	73
2	Epitranscriptomic regulation of HIV-1 full-length RNA packaging. Nucleic Acids Research, 2022, 50, 2302-2318.	14.5	18
3	Neutralizing antibody titers elicited by CoronaVac and BNT162b2 vaccines in health care workers with and without prior SARS-CoV-2 infection. Journal of Travel Medicine, 2022, 29, .	3.0	3
4	Sustained Antibody-Dependent NK Cell Functions in Mild COVID-19 Outpatients During Convalescence. Frontiers in Immunology, 2022, 13, 796481.	4.8	7
5	Screening of Natural Products Inhibitors of SARS-CoV-2 Entry. Molecules, 2022, 27, 1743.	3.8	22
6	Differential neutralizing antibody responses elicited by CoronaVac and BNT162b2 against SARS-CoV-2 Lambda in Chile. Nature Microbiology, 2022, 7, 524-529.	13.3	22
7	Serological study of CoronaVac vaccine and booster doses in Chile: immunogenicity and persistence of anti-SARS-CoV-2 spike antibodies. BMC Medicine, 2022, 20, .	5.5	13
8	Accuracy of a RT-qPCR SARS-CoV-2 detection assay without prior RNA extraction. Journal of Virological Methods, 2021, 287, 113969.	2.1	20
9	CBP80/20-dependent translation initiation factor (CTIF) inhibits HIV-1 Gag synthesis by targeting the function of the viral protein Rev. RNA Biology, 2021, 18, 745-758.	3.1	6
10	Tellurite Promotes Stress Granules and Nuclear SG-Like Assembly in Response to Oxidative Stress and DNA Damage. Frontiers in Cell and Developmental Biology, 2021, 9, 622057.	3.7	8
11	Insights into neutralizing antibody responses in individuals exposed to SARS-CoV-2 in Chile. Science Advances, 2021, 7, .	10.3	29
12	Early versus deferred anti-SARS-CoV-2 convalescent plasma in patients admitted for COVID-19: A randomized phase II clinical trial. PLoS Medicine, 2021, 18, e1003415.	8.4	72
13	Call to Action: Supporting Latin American Early Career Researchers on the Quest for Sustainable Development in the Region. Frontiers in Research Metrics and Analytics, 2021, 6, 657120.	1.9	8
14	RNA Helicase DDX3: A Double-Edged Sword for Viral Replication and Immune Signaling. Microorganisms, 2021, 9, 1206.	3.6	21
15	Performance of SARS-CoV-2 rapid antigen test compared with real-time RT-PCR in asymptomatic individuals. International Journal of Infectious Diseases, 2021, 107, 201-204.	3.3	51
16	Dynein Light-Chain Dynlrb2 Is Essential for Murine Leukemia Virus Traffic and Nuclear Entry. Journal of Virology, 2021, 95, e0017021.	3.4	1
17	In Situ Hybridization-Proximity Ligation Assay (ISH-PLA) to Study the Interaction of HIV-1 RNA and Remodeling Proteins. Methods in Molecular Biology, 2021, 2209, 307-319.	0.9	1
18	N6 -Methyladenosine Negatively Regulates Human Respiratory Syncytial Virus Replication. Frontiers in Cell and Developmental Biology, 2021, 9, 739445.	3.7	2

Fernando

#	Article	IF	CITATIONS
19	Escherichia coli HS and Enterotoxigenic Escherichia coli Hinder Stress Granule Assembly. Microorganisms, 2021, 9, 17.	3.6	3
20	Surveillance of seasonal respiratory viruses among Chilean patients during the <scp>COVID</scp> â€19 pandemic. Health Science Reports, 2021, 4, e433.	1.5	0
21	Evaluation of the Immune Response Induced by CoronaVac 28-Day Schedule Vaccination in a Healthy Population Group. Frontiers in Immunology, 2021, 12, 766278.	4.8	13
22	Crosstalk between RNA Metabolism and Cellular Stress Responses during Zika Virus Replication. Pathogens, 2020, 9, 158.	2.8	6
23	Strategies for Success. Viral Infections and Membraneless Organelles. Frontiers in Cellular and Infection Microbiology, 2019, 9, 336.	3.9	42
24	New Challenges of HIV-1 Infection: How HIV-1 Attacks and Resides in the Central Nervous System. Cells, 2019, 8, 1245.	4.1	51
25	A Rev–CBP80–elF4AI complex drives Gag synthesis from the HIV-1 unspliced mRNA. Nucleic Acids Research, 2018, 46, 11539-11552.	14.5	22
26	Emerging Roles of N6-Methyladenosine on HIV-1 RNA Metabolism and Viral Replication. Frontiers in Microbiology, 2018, 9, 576.	3.5	20
27	Epitranscriptomic regulation of viral replication. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 460-471.	1.9	17
28	HIV-1 enhances mTORC1 activity and repositions lysosomes to the periphery by co-opting Rag GTPases. Scientific Reports, 2017, 7, 5515.	3.3	31
29	The [Mo6Cl14]2â^' Cluster is Biologically Secure and Has Anti-Rotavirus Activity In Vitro. Molecules, 2017, 22, 1108.	3.8	6
30	Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries. Viruses, 2016, 8, 320.	3.3	24
31	Who Regulates Whom? An Overview of RNA Granules and Viral Infections. Viruses, 2016, 8, 180.	3.3	73
32	DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its N-terminal domain. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 719-730.	1.9	43
33	Proteomic analysis of HIV-1 Gag interacting partners using proximity-dependent biotinylation. Virology Journal, 2015, 12, 138.	3.4	38
34	RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Reviews in Medical Virology, 2015, 25, 286-299.	8.3	107
35	HIV-2 genomic RNA accumulates in stress granules in the absence of active translation. Nucleic Acids Research, 2014, 42, 12861-12875.	14.5	15
36	eEF2 and Ras-GAP SH3 domain-binding protein (G3BP1) modulate stress granule assembly during HIV-1 infection. Nature Communications, 2014, 5, 4819.	12.8	76

Fernando

#	Article	IF	CITATIONS
37	Roles of HIV-1 capsid in viral replication and immune evasion. Virus Research, 2014, 193, 116-129.	2.2	49
38	Depletion of hnRNP A2/B1 overrides the nuclear retention of the HIV-1 genomic RNA. RNA Biology, 2013, 10, 1714-1725.	3.1	26
39	A cis-Acting Element Present within the gag Open Reading Frame Negatively Impacts on the Activity of the HIV-1 IRES. PLoS ONE, 2013, 8, e56962.	2.5	18
40	Dual Mechanisms of Translation Initiation of the Full-Length HIV-1 mRNA Contribute to Gag Synthesis. PLoS ONE, 2013, 8, e68108.	2.5	44
41	Viral modulation of stress granules. Virus Research, 2012, 169, 430-437.	2.2	46
42	Bocavirus humano en Chile: caracterÃsticas clÃnicas y epidemiológicas en niños con infecciones respiratorias. Revista Chilena De Infectologia, 2011, 28, 504-511.	0.1	4
43	Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES trans-acting factors. Nucleic Acids Research, 2011, 39, 6186-6200.	14.5	61
44	Translation initiation of viral mRNAs. Reviews in Medical Virology, 2010, 20, 177-195.	8.3	41
45	The 5'-untranslated region of the mouse mammary tumor virus mRNA exhibits cap-independent translation initiation. Nucleic Acids Research, 2010, 38, 618-632.	14.5	32
46	The Elav-like protein HuR exerts translational control of viral internal ribosome entry sites. Virology, 2009, 392, 178-185.	2.4	58
47	<i>Anaplasma platys</i> in Dogs, Chile. Emerging Infectious Diseases, 2007, 13, 1392-1395.	4.3	50