
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1990810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green Synthesis of Dense Rock MgO Nanoparticles Using Carica Papaya Leaf Extract and its Shape Dependent Antimicrobial Activity: Joint Experimental and DFT Investigation. Journal of Cluster Science, 2022, 33, 1667-1675.	3.3	7
2	Green Synthesis of Triangular ZnO Nanoparticles Using Azadirachta indica Leaf Extract and Its Shape Dependency for Significant Antimicrobial Activity: Joint Experimental and Theoretical Investigation. Journal of Cluster Science, 2022, 33, 2517-2530.	3.3	9
3	Experimental and first-principles investigation on the structural, electronic and antimicrobial properties of nickel hydroxide nanoparticles. Journal of Physics and Chemistry of Solids, 2022, 160, 110367.	4.0	5
4	Monolayer PC3: A promising material for environmentally toxic nitrogen-containing multi gases. Journal of Hazardous Materials, 2022, 422, 126761.	12.4	25
5	Two-Dimensional lithium fluoride (LiF) as an efficient hydrogen storage material. Applied Surface Science, 2022, 581, 151776.	6.1	7
6	Group three nitride clusters as promising components for nanoelectronics. Materials Today Chemistry, 2022, 23, 100751.	3.5	2
7	Synthesis, characterization and significant antimicrobial properties of CZTS nanoparticles against pathogenic strains. Journal of the Indian Chemical Society, 2022, 99, 100351.	2.8	7
8	First principle investigation on 2D beryllium chalcogenides for thermoelectric and optical applications. Journal of Physics and Chemistry of Solids, 2022, 164, 110619.	4.0	6
9	Zirconium-organic framework as a novel adsorbent for arsenate remediation from aqueous solutions. Journal of Molecular Liquids, 2022, 356, 118957.	4.9	15
10	Transverse electronic transport through nucleobase-pairs of a DNA wire. Materials Today Chemistry, 2022, 24, 100834.	3.5	2
11	Synthesis of Ciprofloxacin Drug Capped Silver Nanoparticles and Their Antimicrobial Activity: A Joint Spectrophotometric and Density Functional Investigation. Journal of Cluster Science, 2021, 32, 1575-1584.	3.3	5
12	2D Sb2C3 monolayer: A promising material for the recyclable gas sensor for environmentally toxic nitrogen-containing gases (NCGs). Journal of Hazardous Materials, 2021, 405, 124168.	12.4	35
13	Structural, electronic, vibrational, mechanical and thermoelectric properties of 2D and bulk BaX (X=O, S, Se and Te) series under DFT and BTE framework. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114523.	2.7	13
14	Electric field-induced band modulation of predicted ternary 2D MXC3 [M:XÂ= As:Ge, Sb:Sn and Bi:Pb] with strong stability and optical properties. Carbon, 2021, 172, 791-803.	10.3	21
15	Conceptual density functional theory and aromaticity. , 2021, , 285-319.		1
16	First-Principles Calculations of SiBi Nanosheets as Sensors for Oxygen-Containing Gases. ACS Applied Nano Materials, 2021, 4, 2440-2451.	5.0	19
17	Ca ₂ C MXene monolayer as a superior anode for metal-ion batteries. 2D Materials, 2021, 8, 035015.	4.4	44
18	The interaction of two-dimensional P2SiS nanosheet with environmental toxic NCG molecules for sensor application: A DFT study. Sensors and Actuators A: Physical, 2021, 322, 112608.	4.1	25

#	Article	IF	CITATIONS
19	Strain-induced electronic, stability and enhancement of thermoelectric performance of 2D Si2C3 monolayer: An emerging material for renewable energy. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 132, 114769.	2.7	3
20	Hydrogen-induced tunable electronic and optical properties of a two-dimensional penta-Pt ₂ N ₄ monolayer. Physical Chemistry Chemical Physics, 2021, 23, 10409-10417.	2.8	24
21	Structural, vibrational, electronic, elastic and thermoelectric properties of monolayer alkali halide compounds from first principles investigation. Materials Today Communications, 2021, 29, 102855.	1.9	4
22	Thermoelectric investigation on Mg3N2 monolayer. AIP Conference Proceedings, 2020, , .	0.4	0
23	DFT investigation on the optical properties of 2D-CaSe. AlP Conference Proceedings, 2020, , .	0.4	1
24	Monolayer Bi2C3: A promising sensor for environmentally toxic NCGs with high sensitivity and selectivity. Applied Surface Science, 2020, 534, 147609.	6.1	23
25	Strain-induced band modulation and excellent stability, transport and optical properties of penta-MP ₂ (M = Ni, Pd, and Pt) monolayers. Nanoscale Advances, 2020, 2, 4566-4580.	4.6	10
26	Two-Dimensional Boron–Phosphorus Monolayer for Reversible NO ₂ Gas Sensing. ACS Applied Nano Materials, 2020, 3, 10073-10081.	5.0	40
27	First principle investigation on the optical properties of monolayer CaS. AIP Conference Proceedings, 2020, , .	0.4	0
28	Heterobilayer CaS/CaSe: A promising sensor for environmental toxic NO2 gas with high selectivity and sensitivity. Applied Surface Science, 2020, 528, 146996.	6.1	30
29	2D PC ₃ as a promising thermoelectric material. Physical Chemistry Chemical Physics, 2020, 22, 8625-8632.	2.8	18
30	Investigation on the thermoelectric properties of single & bilayers of SrS. AIP Conference Proceedings, 2020, , .	0.4	0
31	Hybrid CaS/CaSe bilayer as a wide temperature range thermoelectric material. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 114014.	2.7	8
32	Structure, stability, electronic and thermoelectric properties of strontium chalcogenides. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 113965.	2.7	18
33	Biological activity of some ACAT inhibitors in the light of DFT-based quantum descriptors. Structural Chemistry, 2019, 30, 2379-2387.	2.0	2
34	h-CaS and h-CaSe nanosheets in CaX (X = O, S, Se and Te) series: promising thermoelectric materials under DFT investigation. Applied Nanoscience (Switzerland), 2019, 9, 1845-1856.	3.1	15
35	Single-layer stanane as potential gas sensor for NO2, SO2, CO2 and NH3 under DFT investigation. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 110, 100-106.	2.7	48
36	Density functional investigation on hexagonal nanosheets and bulk thallium nitrides for possible thermoelectric applications. Applied Nanoscience (Switzerland), 2019, 9, 33-42.	3.1	8

#	Article	IF	CITATIONS
37	Structure, bonding, stability, electronic, thermodynamic and thermoelectric properties of six different phases of indium nitride. Journal of Materials Science, 2018, 53, 8302-8313.	3.7	28
38	DFT study on band gap tunability in boron doped monolayer SiC. AIP Conference Proceedings, 2018, , .	0.4	0
39	Bio-activity of aminosulfonyl ureas in the light of nucleic acid bases and DNA base pair interaction. Computational Biology and Chemistry, 2018, 75, 91-100.	2.3	2
40	Optical activity of Co-porphyrin in the light of IR and Raman spectroscopy: A critical DFT investigation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 190, 121-128.	3.9	36
41	Structure, electronic, optical and thermodynamic behavior on the polymerization of PMMA: A DFT investigation. Computational Biology and Chemistry, 2018, 72, 192-198.	2.3	12
42	Magnetic switching in Cr (x = 2–8) and its oxide cluster series. Journal of Magnetism and Magnetic Materials, 2018, 451, 32-37.	2.3	4
43	Synthesis and physicochemical characterizations and antimicrobial activity of ZnO nanoparticles. AlP Conference Proceedings, 2018, , .	0.4	0
44	Toxicity of polyhalogenated dibenzo-p-furans in the light of nucleic acid bases interaction. Computational Biology and Chemistry, 2018, 76, 225-231.	2.3	2
45	Green synthesis of CuO nanoparticles using <i>Azadirachta indica</i> and its antibacterial activity for medicinal applications. Materials Research Express, 2018, 5, 095033.	1.6	24
46	Electronic structure and optical properties of metal doped tetraphenylporphyrins. AIP Conference Proceedings, 2018, , .	0.4	3
47	Synthesis, Physicochemical Characterizations and Antimicrobial Activity of CuO Nanoparticles. Current Nanomaterials, 2018, 3, 121-125.	0.4	0
48	Levofloxacin capped Ag-nanoparicles: A new highly selective sensor for cations under joint experimental and DFT investigation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 179, 178-187.	3.9	11
49	First principle study on the structure, electronic and optical properties of MoS2/AlN hybrid bilayer: A DFT investigation. AIP Conference Proceedings, 2017, , .	0.4	1
50	Highly Sensitive Bifunctional Probe for Colorimetric Cyanide and Fluorometric H ₂ S Detection and Bioimaging: Spontaneous Resolution, Aggregation, and Multicolor Fluorescence of Bisulfide Adduct. Journal of Organic Chemistry, 2017, 82, 10234-10246.	3.2	40
51	Tl4Mg3 in TlxMg3 (x = 1–6) series: A bimetallic magic cluster for novel cluster assembled nanomaterials. AIP Conference Proceedings, 2017, , .	0.4	0
52	Hexagonal thallium nitride in (TIX) 2n+1 H 2n+4 [XÂ=ÂN, P, As; n Â=Â1–5] cluster series: A promising building motif for future smart nanomaterials. Materials Chemistry and Physics, 2017, 200, 368-375.	4.0	10
53	Electronic and optical properties of BaTiO3 across tetragonal to cubic phase transition: An experimental and theoretical investigation. Journal of Applied Physics, 2017, 122, .	2.5	95
54	DFT investigation on structure, electronic and magnetic properties of Crn (n=2-8) clusters. AIP Conference Proceedings, 2016, , .	0.4	1

#	Article	IF	CITATIONS
55	Electronic properties of hexagonal gallium phosphide: A DFT investigation. AIP Conference Proceedings, 2016, , .	0.4	4
56	Structure, electronic and magnetic properties of Mnn (n=2-8) clusters: A DFT investigation. AIP Conference Proceedings, 2016, , .	0.4	1
57	Sc 3 N and Sc 2 C 2 encapsulated B 40 : Smarter than its carbon analogue. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 354-360.	2.7	12
58	2D and bulk h-MgSe materials from Mg Se (m, n= 1–3) clusters: Density functional investigation. Journal of Alloys and Compounds, 2016, 687, 130-134.	5.5	1
59	Overview and Recent Advances in QSAR Studies. , 2016, , 29-60.		2
60	ln4Mg3 in InxMg3 (x = 1 – 6) series: a magic unit for future smart materials. Nanosystems: Physics, Chemistry, Mathematics, 2016, , 592-594.	0.4	0
61	DFT investigation on A4B4 (A=Cu, Ag; B=As, Sn) metal–semiconductor alloy clusters for potential nanomaterials. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 68, 224-231.	2.7	9
62	Structure, electronic properties, aromaticity and dynamics of M3N@C80 and M2C2@C82 (M=Sc, Y): A density functional study. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 70, 157-164.	2.7	3
63	Toxicity prediction of PHDDs and phenols in the light of nucleic acid bases and DNA base pair interaction. Journal of Molecular Graphics and Modelling, 2015, 62, 128-137.	2.4	6
64	Arsenic based hexagonal building motifs for inorganic nanomaterials. , 2014, , .		0
65	Structure investigation of CoxO y + (x=3–6, y=3–8) clusters by IR vibrational spectroscopy and DFT calculations. European Physical Journal D, 2014, 68, 1.	1.3	16
66	A comparative DFT study on electronic, thermodynamic and optical properties of telluride compounds. Computational Materials Science, 2014, 88, 156-162.	3.0	9
67	Magic stability of Ga4Mg3 cluster in GaxMg3(x=1–6) series: A density functional study. Chemical Physics, 2013, 411, 6-10.	1.9	3
68	Magic Clusters in Si <i>_x</i> Mg ₃ (<i>x</i> =1-10) Series: Potential Building Motifs for Inorganic Nanomaterials. Journal of Nano Research, 2013, 24, 77-84.	0.8	2
69	Theoretical study of microscopic solvation of NaOH in water: NaOH(H2O)n, n=1–10. Chemical Physics, 2012, 407, 92-96.	1.9	6
70	A DFT study on group III and V combined hexagonal clusters as potential building motifs for inorganic nanomaterials. Journal of Molecular Structure, 2012, 1007, 203-207.	3.6	5
71	On the Ground State of Pd ₁₃ . Journal of the American Chemical Society, 2011, 133, 12192-12196.	13.7	74
72	Bonding, aromaticity, and structure of trigonal dianion metal clusters. Journal of Computational Chemistry, 2010, 31, 1815-1821.	3.3	27

#	Article	IF	CITATIONS
73	Magnetic moment and local moment alignment in anionic and/or oxidized Fen clusters. Journal of Chemical Physics, 2010, 132, 194305.	3.0	41
74	Effect of Electronic and Geometric Shell Closures on the Stability of Neutral and Anionic TiNa _{<i>n</i>} (<i>n</i> = 1â^13) Clusters. Journal of Physical Chemistry C, 2010, 114, 10739-10744.	3.1	26
75	Arsenic toxicity: an atom counting and electrophilicity-based protocol. Molecular Diversity, 2009, 13, 551-556.	3.9	15
76	An Atom Counting QSPR Protocol. QSAR and Combinatorial Science, 2008, 27, 208-230.	1.4	16
77	Bonding and aromaticity in an all-metal sandwich-like compound, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>Be</mml:mtext></mml:mrow><m Chemical Physics Letters. 2008. 460. 382-385.</m </mml:msubsup></mml:mrow></mml:math 	ml:mrow><1	28 mml:mn>8
78	Bonding, reactivity and aromaticity in the light of the multicenter indices. Computational and Theoretical Chemistry, 2008, 854, 35-39.	1.5	35
79	Aromaticity in cyclic alkali clusters. Physical Chemistry Chemical Physics, 2008, 10, 2461.	2.8	26
80	Reactivity, Selectivity, and Aromaticity of Be ₃ ²⁻ and Its Complexes. Journal of Physical Chemistry A, 2008, 112, 1612-1621.	2.5	57
81	Aromaticity in alkali metal clusters: Role of the metalloligand and the size of the metal ion. Journal of Computational Methods in Sciences and Engineering, 2008, 7, 395-408.	0.2	0
82	Electronic Structure Principles in Static and Dynamic Situations. Computing Letters, 2007, 3, 223-230.	0.5	16
83	Update 1 of: Electrophilicity Index. Chemical Reviews, 2007, 107, PR46-PR74.	47.7	509
84	Synthesis and structure of 1-D Na6cluster chain with short Na–Na distance: Organic like aromaticity in inorganic metal cluster. Chemical Communications, 2007, , 135-137.	4.1	32
85	Aromaticity in Polyacene Analogues of Inorganic Ring Compounds. Journal of Physical Chemistry A, 2007, 111, 4684-4696.	2.5	52
86	Electronic Structure Principles and Aromaticity. Journal of Chemical Education, 2007, 84, 354.	2.3	68
87	Multiphilic Descriptor for Chemical Reactivity and Selectivity. Journal of Physical Chemistry A, 2007, 111, 9130-9138.	2.5	141
88	Are strong BrÃ,nsted acids necessarily strong Lewis acids?. Computational and Theoretical Chemistry, 2007, 812, 13-24.	1.5	32
89	A connection between softness and magnetizability. Computational and Theoretical Chemistry, 2007, 813, 63-65.	1.5	23
90	An atom counting strategy towards analyzing the biological activity of sex hormones. European Journal of Medicinal Chemistry, 2007, 42, 1365-1369.	5.5	39

DEBESH R ROY

#	Article	IF	CITATIONS
91	Local hardness: a critical account. Theoretical Chemistry Accounts, 2007, 118, 923-930.	1.4	95
92	An atom counting and electrophilicity based QSTR approach. Journal of Chemical Sciences, 2007, 119, 475-488.	1.5	23
93	A Possible Union of Chemical Bonding, Reactivity, and Kinetics. Journal of Physical Chemistry A, 2006, 110, 11401-11403.	2.5	28
94	An Electrophilicity Based Analysis of Toxicity of Aromatic Compounds TowardsTetrahymena Pyriformis. QSAR and Combinatorial Science, 2006, 25, 114-122.	1.4	32
95	Chemical reactivity descriptor based aromaticity indices applied to and systems. Computational and Theoretical Chemistry, 2006, 759, 109-110.	1.5	39
96	Electrophilicity Index. Chemical Reviews, 2006, 106, 2065-2091.	47.7	1,383
97	Careful Scrutiny of the Philicity Concept. Journal of Physical Chemistry A, 2006, 110, 1084-1093.	2.5	87
98	Analyzing Toxicity Through Electrophilicity. Molecular Diversity, 2006, 10, 119-131.	3.9	115
99	Minimum magnetizability principle. Journal of Chemical Physics, 2006, 125, 056101.	3.0	31
100	Electrophilicity as a possible descriptor for toxicity prediction. Bioorganic and Medicinal Chemistry, 2005, 13, 3405-3412.	3.0	173
101	A conceptual DFT approach towards analysing toxicity. Journal of Chemical Sciences, 2005, 117, 599-612.	1.5	36
102	Stability and Reactivity of All-Metal Aromatic and Antiaromatic Systems in Light of the Principles of Maximum Hardness and Minimum Polarizability. Journal of Physical Chemistry A, 2005, 109, 9590-9597.	2.5	94
103	Local Descriptors around a Transition State:  A Link between Chemical Bonding and Reactivity. Journal of Physical Chemistry A, 2005, 109, 3771-3772.	2.5	31
104	Electrophilicity index as a possible descriptor of biological activity. Bioorganic and Medicinal Chemistry, 2004, 12, 5533-5543.	3.0	363
105	Exploiting unusual affinity of usual polysaccharides for separation of enzymes on fluidized beds. Enzyme and Microbial Technology, 2000, 27, 53-65.	3.2	34
106	Modeling Ecotoxicity as Applied to some Selected Aromatic Compounds. , 0, , 1-24.		2