Maud Bernoux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/198976/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18832-18839.	7.1	82
2	Multiple functional self-association interfaces in plant TIR domains. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2046-E2052.	7.1	103
3	What Do We Know About NOD-Like Receptors in Plant Immunity?. Annual Review of Phytopathology, 2017, 55, 205-229.	7.8	106
4	Loss of <i>AvrSr50</i> by somatic exchange in stem rust leads to virulence for <i>Sr50</i> resistance in wheat. Science, 2017, 358, 1607-1610.	12.6	206
5	Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC–NLR proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10204-10209.	7.1	97
6	Comparative Analysis of the Flax Immune Receptors L6 and L7 Suggests an Equilibrium-Based Switch Activation Model. Plant Cell, 2016, 28, 146-159.	6.6	110
7	A novel conserved mechanism for plant NLR protein pairs: the ââ,¬Å"integrated decoyââ,¬Â•hypothesis. Frontiers in Plant Science, 2014, 5, 606.	3.6	324
8	Structural Basis for Assembly and Function of a Heterodimeric Plant Immune Receptor. Science, 2014, 344, 299-303.	12.6	300
9	The <scp>NB</scp> â€ <scp>LRR</scp> proteins <scp>RGA</scp> 4 and <scp>RGA</scp> 5 interact functionally and physically to confer disease resistance. EMBO Journal, 2014, 33, 1941-1959.	7.8	310
10	Intramolecular Interaction Influences Binding of the Flax L5 and L6 Resistance Proteins to their AvrL567 Ligands. PLoS Pathogens, 2012, 8, e1003004.	4.7	93
11	N-Terminal Motifs in Some Plant Disease Resistance Proteins Function in Membrane Attachment and Contribute to Disease Resistance. Molecular Plant-Microbe Interactions, 2012, 25, 379-392.	2.6	62
12	Structural and Functional Analysis of a Plant Resistance Protein TIR Domain Reveals Interfaces for Self-Association, Signaling, and Autoregulation. Cell Host and Microbe, 2011, 9, 200-211.	11.0	301
13	New insights in plant immunity signaling activation. Current Opinion in Plant Biology, 2011, 14, 512-518.	7.1	114
14	Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis. PLoS Pathogens, 2010, 6, e1001202.	4.7	164
15	In the trenches of plant pathogen recognition: Role of NB-LRR proteins. Seminars in Cell and Developmental Biology, 2009, 20, 1017-1024.	5.0	52
16	RD19, an <i>Arabidopsis</i> Cysteine Protease Required for RRS1-R–Mediated Resistance, Is Relocalized to the Nucleus by the <i>Ralstonia solanacearum</i> PopP2 Effector. Plant Cell, 2008, 20, 2252-2264.	6.6	183