List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1989573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Virulence factors perforate the pathogen-containing vacuole to signal efferocytosis. Cell Host and Microbe, 2022, 30, 163-170.e6.	5.1	16
2	Assessment of Murine Colon Inflammation Using Intraluminal Fluorescence Lifetime Imaging. Molecules, 2022, 27, 1317.	1.7	4
3	Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gut microbes. Cell Host and Microbe, 2022, 30, 836-847.e6.	5.1	29
4	To breathe or not to breathe?. ELife, 2022, 11, .	2.8	1
5	The microbiome and gut homeostasis. Science, 2022, 377, .	6.0	127
6	<i>Salmonella</i> versus the Microbiome. Microbiology and Molecular Biology Reviews, 2021, 85, .	2.9	88
7	5-Aminosalicylic Acid Ameliorates Colitis and Checks Dysbiotic Escherichia coli Expansion by Activating PPAR-Î ³ Signaling in the Intestinal Epithelium. MBio, 2021, 12, .	1.8	56
8	Meet the Future Leaders in the Field of Host-Microbe Interactions. Infection and Immunity, 2021, 89, .	1.0	0
9	The Habitat Filters of Microbiota-Nourishing Immunity. Annual Review of Immunology, 2021, 39, 1-18.	9.5	21
10	Special Collection on the Microbiome and Infection. Infection and Immunity, 2021, 89, e0035621.	1.0	1
11	The metabolic footprint of Clostridia and Erysipelotrichia reveals their role in depleting sugar alcohols in the cecum. Microbiome, 2021, 9, 174.	4.9	17
12	High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine <i>N</i> -oxide. Science, 2021, 373, 813-818.	6.0	132
13	The longitudinal and cross-sectional heterogeneity of the intestinal microbiota. Current Opinion in Microbiology, 2021, 63, 221-230.	2.3	21
14	2021 Acknowledgment of IAI <i>Ad Hoc</i> Reviewers. Infection and Immunity, 2021, 89, .	1.0	0
15	Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. Cell Reports, 2021, 37, 110016.	2.9	35
16	Intraluminal fluorescence lifetime imaging (FLIm) as a diagnostic tool for gastrointestinal disease. , 2021, , .		2
17	The ASM Journals Committee Values the Contributions of Black Microbiologists. Infection and Immunity, 2020, 88, .	1.0	0
18	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Spectrum, 2020, 8, .	1.2	0

#	Article	IF	CITATIONS
19	High-Fat Diet and Antibiotics Cooperatively Impair Mitochondrial Bioenergetics to Trigger Dysbiosis that Exacerbates Pre-inflammatory Bowel Disease. Cell Host and Microbe, 2020, 28, 273-284.e6.	5.1	88
20	Anaerobic Respiration of NOX1-Derived Hydrogen Peroxide Licenses Bacterial Growth at the Colonic Surface. Cell Host and Microbe, 2020, 28, 789-797.e5.	5.1	41
21	The ASM Journals Committee Values the Contributions of Black Microbiologists. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	Ο
22	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Virology, 2020, 94, .	1.5	0
23	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Bacteriology, 2020, 202, .	1.0	Ο
24	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	0
25	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Microbiology and Biology Education, 2020, 21, .	0.5	2
26	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSystems, 2020, 5, .	1.7	0
27	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Resource Announcements, 2020, 9, .	0.3	0
28	The ASM Journals Committee Values the Contributions of Black Microbiologists. MBio, 2020, 11, .	1.8	3
29	Acknowledgment of <i>Ad Hoc</i> Reviewers. Infection and Immunity, 2020, 88, .	1.0	Ο
30	Call for Original Research Papers for a Special Collection in <i>Infection and Immunity</i> : the Microbiome and Infection. Infection and Immunity, 2020, 88, .	1.0	0
31	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Clinical Microbiology, 2020, 58, .	1.8	1
32	Early-Career Scientists Shaping the New Microbiology. Infection and Immunity, 2020, 88, .	1.0	1
33	Factors Required for Adhesion of Salmonella enterica Serovar Typhimurium to Corn Salad (Valerianella locusta). Applied and Environmental Microbiology, 2020, 86, .	1.4	22
34	Gastrointestinal host-pathogen interaction in the age of microbiome research. Current Opinion in Microbiology, 2020, 53, 78-89.	2.3	27
35	The ASM Journals Committee Values the Contributions of Black Microbiologists. Applied and Environmental Microbiology, 2020, 86, .	1.4	1
36	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSphere, 2020, 5, .	1.3	1

#	Article	IF	CITATIONS
37	The ASM Journals Committee Values the Contributions of Black Microbiologists. Molecular and Cellular Biology, 2020, 40, .	1.1	0
38	The ASM Journals Committee Values the Contributions of Black Microbiologists. Clinical Microbiology Reviews, 2020, 33, .	5.7	1
39	Nodâ€like receptors are critical for gut–brain axis signalling in mice. Journal of Physiology, 2019, 597, 5777-5797.	1.3	48
40	Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. Immunity, 2019, 51, 214-224.	6.6	24
41	Dysbiosis: from fiction to function. American Journal of Physiology - Renal Physiology, 2019, 317, G602-G608.	1.6	70
42	Microbiota-nourishing Immunity and Its Relevance for Ulcerative Colitis. Inflammatory Bowel Diseases, 2019, 25, 811-815.	0.9	26
43	The founder hypothesis: A basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens. PLoS Pathogens, 2019, 15, e1007563.	2.1	67
44	Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nature Microbiology, 2019, 4, 1057-1064.	5.9	141
45	omu, a Metabolomics Count Data Analysis Tool for Intuitive Figures and Convenient Metadata Collection. Microbiology Resource Announcements, 2019, 8, .	0.3	15
46	Increased Epithelial Oxygenation Links Colitis to an Expansion of Tumorigenic Bacteria. MBio, 2019, 10, .	1.8	44
47	Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. Journal of Experimental Medicine, 2019, 216, 84-98.	4.2	135
48	Commensal Enterobacteriaceae Protect against Salmonella Colonization through Oxygen Competition. Cell Host and Microbe, 2019, 25, 128-139.e5.	5.1	159
49	Genetic Ablation of Butyrate Utilization Attenuates Gastrointestinal Salmonella Disease. Cell Host and Microbe, 2018, 23, 266-273.e4.	5.1	48
50	Mechanisms to Evade the Phagocyte Respiratory Burst Arose by Convergent Evolution in Typhoidal Salmonella Serovars. Cell Reports, 2018, 22, 1787-1797.	2.9	34
51	The germ-organ theory of non-communicable diseases. Nature Reviews Microbiology, 2018, 16, 103-110.	13.6	117
52	Precision editing of the gut microbiota ameliorates colitis. Nature, 2018, 553, 208-211.	13.7	377
53	Acknowledgment of <i>Ad Hoc</i> Reviewers. Infection and Immunity, 2018, 86, .	1.0	0
54	Toward Cell Type-Specific In Vivo Dual RNA-Seq. Methods in Enzymology, 2018, 612, 505-522.	0.4	3

4

#	Article	IF	CITATIONS
55	Colonocyte metabolism shapes the gut microbiota. Science, 2018, 362, .	6.0	411
56	Typhoidal Salmonella serovars: ecological opportunity and the evolution of a new pathovar. FEMS Microbiology Reviews, 2018, 42, 527-541.	3.9	20
57	Obesity treatment by epigallocatechinâ€3â€gallateâ^'regulated bile acid signaling and its enriched <i>Akkermansia muciniphila</i> . FASEB Journal, 2018, 32, 6371-6384.	0.2	103
58	Terminal Deoxynucleotidyl Transferase Is Not Required for Antibody Response to Polysaccharide Vaccines against Streptococcus pneumoniae and Salmonella enterica Serovar Typhi. Infection and Immunity, 2018, 86, .	1.0	5
59	Healthy hosts rule within: ecological forces shaping the gut microbiota. Mucosal Immunology, 2018, 11, 1299-1305.	2.7	75
60	Colonization resistance: The deconvolution of a complex trait. Journal of Biological Chemistry, 2017, 292, 8577-8581.	1.6	42
61	Infection and Immunity Welcomes the New Microbiology. Infection and Immunity, 2017, 85, .	1.0	3
62	Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Current Opinion in Microbiology, 2017, 39, 1-6.	2.3	420
63	Microbiota-activated PPAR-Î ³ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science, 2017, 357, 570-575.	6.0	796
64	Oxygen as a driver of gut dysbiosis. Free Radical Biology and Medicine, 2017, 105, 93-101.	1.3	208
65	How bacterial pathogens use type III and type IV secretion systems to facilitate their transmission. Current Opinion in Microbiology, 2017, 35, 1-7.	2.3	27
66	A Salmonella Regulator Modulates Intestinal Colonization and Use of Phosphonoacetic Acid. Frontiers in Cellular and Infection Microbiology, 2017, 7, 69.	1.8	5
67	Respiration of Microbiota-Derived 1,2-propanediol Drives Salmonella Expansion during Colitis. PLoS Pathogens, 2017, 13, e1006129.	2.1	139
68	Spore Preparation Protocol for Enrichment of Clostridia from Murine Intestine. Bio-protocol, 2017, 7,	0.2	3
69	Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 2016, 535, 85-93.	13.7	974
70	Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. Cell Host and Microbe, 2016, 19, 443-454.	5.1	600
71	Virulence factors enhance <i>Citrobacter rodentium</i> expansion through aerobic respiration. Science, 2016, 353, 1249-1253.	6.0	150
72	Energy Taxis toward Host-Derived Nitrate Supports a <i>Salmonella</i> Pathogenicity Island 1-Independent Mechanism of Invasion. MBio, 2016, 7, .	1.8	47

#	Article	IF	CITATIONS
73	Iron acquisition pathways and colonization of the inflamed intestine by Salmonella enterica serovar Typhimurium. International Journal of Medical Microbiology, 2016, 306, 604-610.	1.5	26
74	NOD1 and NOD2: New Functions Linking Endoplasmic Reticulum Stress and Inflammation. DNA and Cell Biology, 2016, 35, 311-313.	0.9	18
75	Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion. Nature, 2016, 534, 697-699.	13.7	132
76	NOD1 and NOD2 signalling links ER stress with inflammation. Nature, 2016, 532, 394-397.	13.7	396
77	Absence of TLR11 in Mice Does Not Confer Susceptibility to Salmonella Typhi. Cell, 2016, 164, 827-828.	13.5	22
78	Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Current Opinion in Microbiology, 2016, 29, 1-8.	2.3	89
79	Direct visualization of endogenous <i>Salmonellaâ€</i> specific B cells reveals a marked delay in clonal expansion and germinal center development. European Journal of Immunology, 2015, 45, 428-441.	1.6	21
80	The Pyromaniac Inside You: <i>Salmonella</i> Metabolism in the Host Gut. Annual Review of Microbiology, 2015, 69, 31-48.	2.9	128
81	What's One Phosphate between Friends (and Foe)?. Cell Host and Microbe, 2015, 17, 1-3.	5.1	12
82	Reconstructing pathogen evolution from the ruins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 647-648.	3.3	9
83	Now you see me, now you don't: the interaction of Salmonella with innate immune receptors. Nature Reviews Microbiology, 2015, 13, 206-216.	13.6	135
84	The Periplasmic Nitrate Reductase NapABC Supports Luminal Growth of Salmonella enterica Serovar Typhimurium during Colitis. Infection and Immunity, 2015, 83, 3470-3478.	1.0	105
85	The Flagellar Regulator TviA Reduces Pyroptosis by Salmonella enterica Serovar Typhi. Infection and Immunity, 2015, 83, 1546-1555.	1.0	36
86	Hypoferremia of infection: a double-edged sword?. Nature Medicine, 2014, 20, 335-337.	15.2	5
87	Dysbiosis in the inflamed intestine. Gut Microbes, 2014, 5, 71-73.	4.3	153
88	Spatial Segregation of Virulence Gene Expression during Acute Enteric Infection with Salmonella enterica serovar Typhimurium. MBio, 2014, 5, e00946-13.	1.8	88
89	Comparative Analysis of <i>Salmonella</i> Genomes Identifies a Metabolic Network for Escalating Growth in the Inflamed Gut. MBio, 2014, 5, e00929-14.	1.8	165
90	Salmonella enterica Serovar Typhi Conceals the Invasion-Associated Type Three Secretion System from the Innate Immune System by Gene Regulation. PLoS Pathogens, 2014, 10, e1004207.	2.1	46

#	Article	IF	CITATIONS
91	The Vi Capsular Polysaccharide Enables Salmonella enterica Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis. PLoS Pathogens, 2014, 10, e1004306.	2.1	68
92	Early Mucosal Sensing of SIV Infection by Paneth Cells Induces IL-1β Production and Initiates Gut Epithelial Disruption. PLoS Pathogens, 2014, 10, e1004311.	2.1	71
93	Why related bacterial species bloom simultaneously in the gut: principles underlying the â€~Like will to like' concept. Cellular Microbiology, 2014, 16, 179-184.	1.1	85
94	Detection of enteric pathogens by the nodosome. Trends in Immunology, 2014, 35, 123-130.	2.9	29
95	Salmonella enterica Serovar Typhi Impairs CD4 T Cell Responses by Reducing Antigen Availability. Infection and Immunity, 2014, 82, 2247-2254.	1.0	25
96	Collateral Damage: Microbiota-Derived Metabolites and Immune Function in the Antibiotic Era. Cell Host and Microbe, 2014, 16, 156-163.	5.1	50
97	Neutrophils Are a Source of Gamma Interferon during Acute Salmonella enterica Serovar Typhimurium Colitis. Infection and Immunity, 2014, 82, 1692-1697.	1.0	35
98	Toll-like Receptor and Inflammasome Signals Converge to Amplify the Innate Bactericidal Capacity of T Helper 1 Cells. Immunity, 2014, 40, 213-224.	6.6	90
99	The impact of intestinal inflammation on the nutritional environment of the gut microbiota. Immunology Letters, 2014, 162, 48-53.	1.1	71
100	High-throughput Assay to Phenotype Salmonella enterica Typhimurium Association, Invasion, and Replication in Macrophages. Journal of Visualized Experiments, 2014, , e51759.	0.2	27
101	PPARÎ ³ -Mediated Increase in Glucose Availability Sustains Chronic Brucella abortus Infection in Alternatively Activated Macrophages. Cell Host and Microbe, 2013, 14, 159-170.	5.1	145
102	Host Specificity of Bacterial Pathogens. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010041-a010041.	2.9	160
103	A novel CsrA titration mechanism regulates fimbrial gene expression in Salmonella typhimurium. EMBO Journal, 2013, 32, 2872-2883.	3.5	51
104	The dynamics of gutâ€associated microbial communities during inflammation. EMBO Reports, 2013, 14, 319-327.	2.0	263
105	Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature, 2013, 496, 233-237.	13.7	210
106	Typhoid. , 2013, , 375-399.		2
107	Host-Derived Nitrate Boosts Growth of <i>E. coli</i> in the Inflamed Gut. Science, 2013, 339, 708-711.	6.0	798
108	Streptomycin-Induced Inflammation Enhances Escherichia coli Gut Colonization Through Nitrate Respiration. MBio, 2013, 4, .	1.8	176

#	Article	IF	CITATIONS
109	Loss of Very-Long O-Antigen Chains Optimizes Capsule-Mediated Immune Evasion by Salmonella enterica Serovar Typhi. MBio, 2013, 4, .	1.8	48
110	CD4+ T Cell-derived IL-10 Promotes Brucella abortus Persistence via Modulation of Macrophage Function. PLoS Pathogens, 2013, 9, e1003454.	2.1	91
111	Salmonella Uses Energy Taxis to Benefit from Intestinal Inflammation. PLoS Pathogens, 2013, 9, e1003267.	2.1	139
112	Colonization Resistance: Battle of the Bugs or Ménage à Trois with the Host?. PLoS Pathogens, 2013, 9, e1003730.	2.1	79
113	Chronic HIV Infection Enhances the Responsiveness of Antigen Presenting Cells to Commensal Lactobacillus. PLoS ONE, 2013, 8, e72789.	1.1	18
114	Temporal Expression of Bacterial Proteins Instructs Host CD4 T Cell Expansion and Th17 Development. PLoS Pathogens, 2012, 8, e1002499.	2.1	73
115	Very Long O-antigen Chains Enhance Fitness during Salmonella-induced Colitis by Increasing Bile Resistance. PLoS Pathogens, 2012, 8, e1002918.	2.1	57
116	Typhoid fever. Gut Microbes, 2012, 3, 88-92.	4.3	40
117	Phage-Mediated Acquisition of a Type III Secreted Effector Protein Boosts Growth of <i>Salmonella</i> by Nitrate Respiration. MBio, 2012, 3, .	1.8	194
118	Human α-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets. Science, 2012, 337, 477-481.	6.0	337
119	A Tollgate for Typhoid. Cell, 2012, 151, 473-475.	13.5	5
120	Salmonellosis in cattle: Advantages of being an experimental model. Research in Veterinary Science, 2012, 93, 1-6.	0.9	50
121	Salmonella, the host and its microbiota. Current Opinion in Microbiology, 2012, 15, 108-114.	2.3	110
122	Host Defenses Trigger Salmonella 's Arsenal. Cell Host and Microbe, 2011, 9, 167-168.	5.1	1
123	Intestinal and chronic infections: <i>Salmonella</i> lifestyles in hostile environments. Environmental Microbiology Reports, 2011, 3, 508-517.	1.0	28
124	Salmonella Exploits Suicidal Behavior of Epithelial Cells. Frontiers in Microbiology, 2011, 2, 48.	1.5	16
125	Role of SPI-1 Secreted Effectors in Acute Bovine Response to Salmonella enterica Serovar Typhimurium: A Systems Biology Analysis Approach. PLoS ONE, 2011, 6, e26869.	1.1	41
126	The IL-23 axis in Salmonella gastroenteritis. Cellular Microbiology, 2011, 13, 1639-1647.	1.1	30

8

#	Article	IF	CITATIONS
127	A <i>Salmonella</i> Virulence Factor Activates the NOD1/NOD2 Signaling Pathway. MBio, 2011, 2, .	1.8	59
128	A breathtaking feat. Gut Microbes, 2011, 2, 58-60.	4.3	59
129	Early MyD88-Dependent Induction of Interleukin-17A Expression during Salmonella Colitis. Infection and Immunity, 2011, 79, 3131-3140.	1.0	40
130	How To Become a Top Model: Impact of Animal Experimentation on Human Salmonella Disease Research. Infection and Immunity, 2011, 79, 1806-1814.	1.0	121
131	Intestinal inflammation allows <i>Salmonella</i> to use ethanolamine to compete with the microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17480-17485.	3.3	551
132	Enteric Pathology and <i>Salmonella</i> -Induced Cell Death in Healthy and SIV-Infected Rhesus Macaques. Veterinary Pathology, 2011, 48, 933-941.	0.8	11
133	The Vi Capsular Polysaccharide Prevents Complement Receptor 3-Mediated Clearance of <i>Salmonella enterica</i> Serotype Typhi. Infection and Immunity, 2011, 79, 830-837.	1.0	91
134	Salmonella bongori Provides Insights into the Evolution of the Salmonellae. PLoS Pathogens, 2011, 7, e1002191.	2.1	171
135	Th17 cells, HIV and the gut mucosal barrier. Current Opinion in HIV and AIDS, 2010, 5, 173-178.	1.5	111
136	Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature, 2010, 467, 426-429.	13.7	1,036
137	Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cellular Microbiology, 2010, 12, 1495-1505.	1.1	138
138	The <i>Salmonella enterica</i> Serotype Typhi Vi Capsular Antigen Is Expressed after the Bacterium Enters the Ileal Mucosa. Infection and Immunity, 2010, 78, 527-535.	1.0	50
139	Taming the Elephant: <i>Salmonella</i> Biology, Pathogenesis, and Prevention. Infection and Immunity, 2010, 78, 2356-2369.	1.0	85
140	Morphologic and Cytokine Profile Characterization of <i>Salmonella enterica</i> Serovar Typhimurium Infection in Calves With Bovine Leukocyte Adhesion Deficiency. Veterinary Pathology, 2010, 47, 322-333.	0.8	22
141	A Rapid Change in Virulence Gene Expression during the Transition from the Intestinal Lumen into Tissue Promotes Systemic Dissemination of Salmonella. PLoS Pathogens, 2010, 6, e1001060.	2.1	58
142	Salmonella's iron armor for battling the host and its microbiota. Gut Microbes, 2010, 1, 70-72.	4.3	19
143	The Blessings and Curses of Intestinal Inflammation. Cell Host and Microbe, 2010, 8, 36-43.	5.1	43
144	Interleukin-23 Orchestrates Mucosal Responses to <i>Salmonella enterica</i> Serotype Typhimurium in the Intestine. Infection and Immunity, 2009, 77, 387-398.	1.0	152

#	Article	IF	CITATIONS
145	The Capsule-Encoding viaB Locus Reduces Intestinal Inflammation by a Salmonella Pathogenicity Island 1-Independent Mechanism. Infection and Immunity, 2009, 77, 2932-2942.	1.0	45
146	Contribution of Flagellin Pattern Recognition to Intestinal Inflammation during <i>Salmonella enterica</i> Serotype Typhimurium Infection. Infection and Immunity, 2009, 77, 1904-1916.	1.0	86
147	<i>Salmonella enterica</i> serotype Typhimurium Std fimbriae bind terminal α(1,2)fucose residues in the cecal mucosa. Molecular Microbiology, 2009, 71, 864-875.	1.2	102
148	The TviA auxiliary protein renders the <i>Salmonella enterica</i> serotype Typhi RcsB regulon responsive to changes in osmolarity. Molecular Microbiology, 2009, 74, 175-193.	1.2	77
149	Is Brucella an enteric pathogen? Reply from Tsolis, Solnick and Baümler. Nature Reviews Microbiology, 2009, 7, 250-250.	13.6	1
150	Salmonella enterica Typhimurium SipA induces CXC-chemokine expression through p38MAPK and JUN pathways. Microbes and Infection, 2009, 11, 302-310.	1.0	23
151	Salmonella enterica serovar Typhimurium-induced internalization and IL-8 expression in HeLa cells does not have a direct relationship with intracellular Ca2+ levels. Microbes and Infection, 2009, 11, 850-858.	1.0	11
152	Lipocalin-2 Resistance Confers an Advantage to Salmonella enterica Serotype Typhimurium for Growth and Survival in the Inflamed Intestine. Cell Host and Microbe, 2009, 5, 476-486.	5.1	444
153	Responses to Amyloids of Microbial and Host Origin Are Mediated through Toll-like Receptor 2. Cell Host and Microbe, 2009, 6, 45-53.	5.1	142
154	Life in the inflamed intestine, Salmonella style. Trends in Microbiology, 2009, 17, 498-506.	3.5	172
155	Simian immunodeficiency virus–induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nature Medicine, 2008, 14, 421-428.	15.2	509
156	From bench to bedside: stealth of enteroinvasive pathogens. Nature Reviews Microbiology, 2008, 6, 883-892.	13.6	132
157	The Vi-capsule prevents Toll-like receptor 4 recognition of Salmonella. Cellular Microbiology, 2008, 10, 876-890.	1.1	122
158	RosE represses Std fimbrial expression in Salmonella enterica serotype Typhimurium. Molecular Microbiology, 2008, 68, 573-587.	1.2	34
159	â€ [~] Form variation' of the O12 antigen is critical for persistence of <i>Salmonella</i> Typhimurium in the murine intestine. Molecular Microbiology, 2008, 70, 1105-1119.	1.2	80
160	T Cells Help To Amplify Inflammatory Responses Induced by <i>Salmonella enterica</i> Serotype Typhimurium in the Intestinal Mucosa. Infection and Immunity, 2008, 76, 2008-2017.	1.0	133
161	Binding Specificity of Salmonella Plasmid-encoded Fimbriae Assessed by Glycomics. Journal of Biological Chemistry, 2008, 283, 8118-8124.	1.6	44
162	Regulation of the <i>Salmonella enterica std</i> Fimbrial Operon by DNA Adenine Methylation, SeqA, and HdfR. Journal of Bacteriology, 2008, 190, 7406-7413.	1.0	60

#	Article	IF	CITATIONS
163	Limited Role for Iron Regulation in <i>Coxiella burnetii</i> Pathogenesis. Infection and Immunity, 2008, 76, 2189-2201.	1.0	47
164	Clinical pathogenesis of typhoid fever. Journal of Infection in Developing Countries, 2008, 2, 260-6.	0.5	81
165	The Capsule Encoding the viaB Locus Reduces Interleukin-17 Expression and Mucosal Innate Responses in the Bovine Intestinal Mucosa during Infection with Salmonella enterica Serotype Typhi. Infection and Immunity, 2007, 75, 4342-4350.	1.0	83
166	Evolution of the Chaperone/Usher Assembly Pathway: Fimbrial Classification Goes Greek. Microbiology and Molecular Biology Reviews, 2007, 71, 551-575.	2.9	283
167	SIMPLE Approach for Isolating Mutants Expressing Fimbriae. Applied and Environmental Microbiology, 2007, 73, 4455-4462.	1.4	13
168	MarT Activates Expression of the MisL Autotransporter Protein of Salmonella enterica Serotype Typhimurium. Journal of Bacteriology, 2007, 189, 3922-3926.	1.0	37
169	Fimbriae: Classification and Biochemistry. EcoSal Plus, 2007, 2, .	2.1	12
170	The Salmonella enterica serotype Typhi regulator TviA reduces interleukin-8 production in intestinal epithelial cells by repressing flagellin secretion. Cellular Microbiology, 2007, 10, 070827234913001-???.	1.1	85
171	Pathogenomics of Salmonella Species. , 2006, , 109-124.		3
172	Neutrophil influx during non-typhoidal salmonellosis: who is in the driver's seat?. FEMS Immunology and Medical Microbiology, 2006, 46, 320-329.	2.7	38
173	Capsule-Mediated Immune Evasion: a New Hypothesis Explaining Aspects of Typhoid Fever Pathogenesis. Infection and Immunity, 2006, 74, 19-27.	1.0	99
174	Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Molecular Microbiology, 2005, 57, 196-211.	1.2	149
175	CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Molecular Microbiology, 2005, 58, 289-304.	1.2	153
176	The Vi Capsular Antigen of Salmonella enterica Serotype Typhi Reduces Toll-Like Receptor-Dependent Interleukin-8 Expression in the Intestinal Mucosa. Infection and Immunity, 2005, 73, 3367-3374.	1.0	176
177	The Salmonella enterica Serotype Typhimurium lpf, bcf, stb, stc, std, and sth Fimbrial Operons Are Required for Intestinal Persistence in Mice. Infection and Immunity, 2005, 73, 3358-3366.	1.0	169
178	Salmonella enterica Serotype Typhimurium Fimbrial Proteins Serve as Antigens during Infection of Mice. Infection and Immunity, 2005, 73, 5329-5338.	1.0	57
179	Host Restriction of Salmonella enterica Serotype Typhi Is Not Caused by Functional Alteration of SipA, SopB, or SopD. Infection and Immunity, 2005, 73, 7817-7826.	1.0	45
180	SipA, SopA, SopB, SopD, and SopE2 Contribute to Salmonella enterica Serotype Typhimurium Invasion of Epithelial Cells. Infection and Immunity, 2005, 73, 146-154.	1.0	258

#	Article	IF	CITATIONS
181	Host Restriction of Salmonella enterica Serotype Typhimurium Pigeon Isolates Does Not Correlate with Loss of Discrete Genes. Journal of Bacteriology, 2004, 186, 2619-2628.	1.0	33
182	Fibronectin Binding to the Salmonella enterica Serotype Typhimurium ShdA Autotransporter Protein Is Inhibited by a Monoclonal Antibody Recognizing the A3 Repeat. Journal of Bacteriology, 2004, 186, 4931-4939.	1.0	39
183	The ShdA adhesin binds to the cationic cradle of the fibronectin 13FnIII repeat module: evidence for molecular mimicry of heparin binding. Molecular Microbiology, 2004, 52, 345-355.	1.2	46
184	Phase and Antigenic Variation in Bacteria. Clinical Microbiology Reviews, 2004, 17, 581-611.	5.7	664
185	Cell tropism of Salmonella enterica. International Journal of Medical Microbiology, 2004, 294, 225-233.	1.5	57
186	The attenuated sopB mutant of Salmonella enterica serovar Typhimurium has the same tissue distribution and host chemokine response as the wild type in bovine Peyer's patches. Veterinary Microbiology, 2003, 97, 269-277.	0.8	40
187	The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Molecular Microbiology, 2003, 48, 1357-1376.	1.2	156
188	Molecular Pathogenesis of Salmonella enterica Serotype Typhimurium-Induced Diarrhea. Infection and Immunity, 2003, 71, 1-12.	1.0	273
189	Molecular and Phenotypic Analysis of the CS54 Island of Salmonella enterica Serotype Typhimurium: Identification of Intestinal Colonization and Persistence Determinants. Infection and Immunity, 2003, 71, 629-640.	1.0	167
190	Secreted Effector Proteins of Salmonella enterica Serotype Typhimurium Elicit Host-Specific Chemokine Profiles in Animal Models of Typhoid Fever and Enterocolitis. Infection and Immunity, 2003, 71, 4795-4803.	1.0	72
191	Hematologic and serum biochemical changes inSalmonellaser Typhimurium-infected calves. American Journal of Veterinary Research, 2002, 63, 1145-1150.	0.3	41
192	Morphologic and Molecular Characterization of Salmonella typhimurium Infection in Neonatal Calves. Veterinary Pathology, 2002, 39, 200-215.	0.8	121
193	Population Heterogeneity of Salmonella enterica Serotype Typhimurium Resulting from Phase Variation of the lpf Operon In Vitro and In Vivo. Journal of Bacteriology, 2002, 184, 2352-2359.	1.0	28
194	Salmonella enterica Serotype Typhimurium and Its Host-Adapted Variants. Infection and Immunity, 2002, 70, 2249-2255.	1.0	255
195	SalmonellaSerotype Typhimurium Infection of Bovine Peyer's Patches Downâ€Regulates Plasma Membrane Calciumâ€Transporting ATPase Expression. Journal of Infectious Diseases, 2002, 186, 372-378.	1.9	9
196	The Salmonella enterica Serotype Typhimurium Effector Proteins SipA, SopA, SopB, SopD, and SopE2 Act in Concert To Induce Diarrhea in Calves. Infection and Immunity, 2002, 70, 3843-3855.	1.0	249
197	Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Molecular Microbiology, 2002, 43, 895-905.	1.2	105
198	Phage mediated horizontal transfer of thesopE1gene increases enteropathogenicity ofSalmonella entericaserotype Typhimurium for calves. FEMS Microbiology Letters, 2002, 217, 243-247.	0.7	56

#	Article	IF	CITATIONS
199	Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes and Infection, 2001, 3, 1335-1344.	1.0	371
200	Role of fimbriae as antigens and intestinal colonization factors of Salmonella serovars. FEMS Microbiology Letters, 2001, 201, 121-125.	0.7	85
201	Non-typhoidal salmonellosis: emerging problems. Microbes and Infection, 2001, 3, 237-247.	1.0	342
202	Salmonella-Induced Cell Death Is Not Required for Enteritis in Calves. Infection and Immunity, 2001, 69, 4610-4617.	1.0	59
203	Salmonella enterica Serotype Typhimurium Elicits Cross-Immunity against a Salmonella enterica Serotype Enteritidis Strain Expressing LP Fimbriae from thelac Promoter. Infection and Immunity, 2001, 69, 204-212.	1.0	25
204	Salmonella enterica Serovar Typhi Possesses a Unique Repertoire of Fimbrial Gene Sequences. Infection and Immunity, 2001, 69, 2894-2901.	1.0	166
205	Salmonella enterica Serovar Typhimurium Induces Cell Death in Bovine Monocyte-Derived Macrophages by Early sipB-Dependent and DelayedsipB-Independent Mechanisms. Infection and Immunity, 2001, 69, 2293-2301.	1.0	70
206	Host adaptation and the emergence of infectious disease: the Salmonella paradigm. Molecular Microbiology, 2000, 36, 1006-1014.	1.2	199
207	The shdA Gene Is Restricted to Serotypes of Salmonella enterica Subspecies I and Contributes to Efficient and Prolonged Fecal Shedding. Infection and Immunity, 2000, 68, 2720-2727.	1.0	110
208	SspA Is Required for Lethal Salmonella enterica Serovar Typhimurium Infections in Calves but Is Not Essential for Diarrhea. Infection and Immunity, 2000, 68, 3158-3163.	1.0	50
209	EPIDEMIOLOGY:Enhanced: Tracing the Origins of Salmonella Outbreaks. Science, 2000, 287, 50-52.	6.0	231
210	Salmonella Interactions with Professional Phagocytes. Sub-Cellular Biochemistry, 2000, 33, 321-342.	1.0	9
211	Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proceedings of the United States of America, 1999, 96, 7502-7507.	3.3	220
212	Phase variation of the lpf operon is a mechanism to evade cross-immunity between Salmonella serotypes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13393-13398.	3.3	46
213	Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Molecular Microbiology, 1999, 34, 850-864.	1.2	253
214	Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature, 1999, 401, 804-808.	13.7	606
215	Of Mice, Calves, and Men. Advances in Experimental Medicine and Biology, 1999, , 261-274.	0.8	127
216	Expression and transcriptional control of theSalmonella typhimurium lpffimbrial operon by phase variation. Molecular Microbiology, 1998, 29, 311-320.	1.2	34

#	Article	IF	CITATIONS
217	The record of horizontal gene transfer in Salmonella. Trends in Microbiology, 1997, 5, 318-322.	3.5	128
218	Response from BÃ ¤ mler. Trends in Microbiology, 1997, 5, 431-432.	3.5	0
219	Identification of a new iron regulated locus of Salmonella typhi. Gene, 1996, 183, 207-213.	1.0	154
220	The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer's patches Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 279-283.	3.3	272
221	Fur Regulon in Gram-negative Bacteria. Journal of Molecular Biology, 1994, 236, 531-545.	2.0	365
222	The TonB protein of Yersinia enterocolitica and its interactions with TonB-box proteins. Molecular Genetics and Genomics, 1993, 237-237, 152-160.	2.4	43
223	Survey on Newly Characterized Iron Uptake Systems of Yersinia enterocolitica. Zentralblatt Fur Bakteriologie: International Journal of Medical Microbiology, 1993, 278, 416-424.	0.5	32
224	Ferrioxamine uptake in Yersinia enterocolitica: characterization of the receptor protein FoxA. Molecular Microbiology, 1992, 6, 1309-1321.	1.2	113
225	Mechanisms of Salmonella enterica Serotype Typhimurium Intestinal Colonization. , 0, , 301-312.		1
226	In vivo identification, expression and function of Salmonella virulence genes. , 0, , 173-206.		0