Karine Serre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1989430/publications.pdf Version: 2024-02-01

KADINE SEDDE

#	Article	IF	CITATIONS
1	Host lung microbiota promotes malaria-associated acute respiratory distress syndrome. Nature Communications, 2022, 13, .	12.8	6
2	Bringing Macrophages to the Frontline against Cancer: Current Immunotherapies Targeting Macrophages. Cells, 2021, 10, 2364.	4.1	13
3	Chitosan/γ-PGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer. Biomaterials, 2020, 257, 120218.	11.4	60
4	MicroRNA-146a controls functional plasticity in Î ³ δT cells by targeting NOD1. Science Immunology, 2018, 3, .	11.9	24
5	Tumor-associated neutrophils suppress pro-tumoral IL-17+ γδT cells through induction of oxidative stress. PLoS Biology, 2018, 16, e2004990.	5.6	86
6	Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Frontiers in Immunology, 2018, 9, 847.	4.8	812
7	Primary Tumors Limit Metastasis Formation through Induction of IL15-Mediated Cross-Talk between Patrolling Monocytes and NK Cells. Cancer Immunology Research, 2017, 5, 812-820.	3.4	57
8	Developmental and Functional Assays to Study Murine and Human Î ³ δT Cells. Methods in Molecular Biology, 2017, 1514, 257-267.	0.9	2
9	Effector Î ³ δT Cell Differentiation Relies on Master but Not Auxiliary Th Cell Transcription Factors. Journal of Immunology, 2016, 196, 3642-3652.	0.8	65
10	Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production. European Journal of Immunology, 2015, 45, 2299-2311.	2.9	25
11	γδT cells in cancer. Nature Reviews Immunology, 2015, 15, 683-691.	22.7	464
12	Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory γδ T cell subsets. Nature Immunology, 2013, 14, 1093-1100.	14.5	97
13	Molecular Mechanisms of Differentiation of Murine Pro-Inflammatory γδT Cell Subsets. Frontiers in Immunology, 2013, 4, 431.	4.8	36
14	CD8 T cells induce T-bet–dependent migration toward CXCR3 ligands by differentiated B cells produced during responses to alum-protein vaccines. Blood, 2012, 120, 4552-4559.	1.4	39
15	Helios Is Associated with CD4 T Cells Differentiating to T Helper 2 and Follicular Helper T Cells In Vivo Independently of Foxp3 Expression. PLoS ONE, 2011, 6, e20731.	2.5	67
16	Soluble flagellin, FliC, induces an Agâ€specific Th2 response, yet promotes Tâ€betâ€regulated Th1 clearance of <i>Salmonella typhimurium</i> infection. European Journal of Immunology, 2011, 41, 1606-1618.	2.9	67
17	Selective effects of NFâ€̂₽1 deficiency in CD4 ⁺ T cells on Th2 and TFh induction by alumâ€precipitated protein vaccines. European Journal of Immunology, 2011, 41, 1573-1582.	2.9	24
18	IL-4 directs both CD4 and CD8 T cells to produce Th2 cytokines in vitro, but only CD4 T cells produce these cytokines in response to alum-precipitated protein in vivo. Molecular Immunology, 2010, 47, 1914-1922.	2.2	36

KARINE SERRE

#	Article	IF	CITATIONS
19	Ontogeny of Stromal Organizer Cells during Lymph Node Development. Journal of Immunology, 2010, 184, 4521-4530.	0.8	116
20	IFN-γ produced by CD8 T cells induces T-bet–dependent and –independent class switching in B cells in responses to alum-precipitated protein vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17292-17297.	7.1	63
21	Dendritic Cells and Monocyte/Macrophages That Create the IL-6/APRIL-Rich Lymph Node Microenvironments Where Plasmablasts Mature. Journal of Immunology, 2009, 182, 2113-2123.	0.8	168
22	Response to the Comments on "Dendritic Cells and Monocyte/Macrophages That Create the IL-6/APRIL-Rich Lymph Node Microenvironment Where Plasmablasts Mature― Journal of Immunology, 2009, 182, 5160.2-5160.	0.8	0
23	Early simultaneous production of intranodal CD4 Th2 effectors and recirculating rapidly responding centralâ€memoryâ€like CD4 T cells. European Journal of Immunology, 2009, 39, 1573-1586.	2.9	8
24	Molecular differences between the divergent responses of ovalbumin-specific CD4 T cells to alum-precipitated ovalbumin compared to ovalbumin expressed by Salmonella. Molecular Immunology, 2008, 45, 3558-3566.	2.2	39
25	<i>Salmonella</i> Induces a Switched Antibody Response without Germinal Centers That Impedes the Extracellular Spread of Infection. Journal of Immunology, 2007, 178, 6200-6207.	0.8	173
26	Recirculating CD4 memory T cells mount rapid secondary responses without major contributions from follicular CD4 effectors and B cells. European Journal of Immunology, 2007, 37, 1476-1484.	2.9	6
27	CD4 T cell help is required for primary CD8 T cell responses to vesicular antigen delivered to dendritic cellsin vivo. European Journal of Immunology, 2006, 36, 1386-1397.	2.9	23
28	Loss of CD154 impairs the Th2 extrafollicular plasma cell response but not early T cell proliferation and interleukin-4 induction. Immunology, 2004, 113, 187-193.	4.4	28
29	Pinpointing IL-4-independent acquisition and IL-4-influenced maintenance of Th2 activity by CD4 T cells. European Journal of Immunology, 2004, 34, 686-694.	2.9	63
30	Responses to the soluble flagellar protein FliC are Th2, while those to FliC onSalmonella are Th1. European Journal of Immunology, 2004, 34, 2986-2995.	2.9	118
31	Extrafollicular antibody responses. Immunological Reviews, 2003, 194, 8-18.	6.0	525
32	Dendritic Cells Capture and Efficiently Present Antigen Encapsulated in Liposomes to T Cells In Vivo. Journal of Liposome Research, 2003, 13, 21-23.	3.3	3
33	Liposomes Targeted to Fc Receptors for Antigen Presentation by Dendritic Cells In Vitro and In Vivoâ^—. Methods in Enzymology, 2003, 373, 100-118.	1.0	7
34	Induction of MHC Class I Presentation of Exogenous Antigen by Dendritic Cells Is Controlled by CD4+ T Cells Engaging Class II Molecules in Cholesterol-Rich Domains. Journal of Immunology, 2002, 168, 1172-1180.	0.8	47
35	Virosome-mediated delivery of protein antigens to dendritic cells. Vaccine, 2002, 20, 2287-2295.	3.8	124
36	Class I-restricted presentation of exogenous antigen acquired by FcÎ ³ receptor-mediated endocytosis is regulated in dendritic cells. European Journal of Immunology, 2000, 30, 848-857.	2.9	118

#	Article	IF	CITATIONS
37	Immunopathology and Trypanosoma congolense parasite sequestration cause acute cerebral trypanosomiasis. ELife, 0, 11, .	6.0	4