Marcos Vieira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1989402/publications.pdf

Version: 2024-02-01

68	1,003	840776 11	501196
papers	citations	h-index	g-index
68	68	68	857
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of Large-Scale Instant IoT Networks. IEEE Transactions on Mobile Computing, 2023, 22, 1810-1824.	5.8	2
2	UW-SEEDEX: A Pseudorandom-Based MAC Protocol for Underwater Acoustic Networks. IEEE Transactions on Mobile Computing, 2022, 21, 3402-3413.	5.8	9
3	Chaining-Box: A Transparent Service Function Chaining Architecture Leveraging BPF. IEEE Transactions on Network and Service Management, 2022, 19, 497-509.	4.9	4
4	Intra and inter-flow link aggregation in SDN. Telecommunication Systems, 2022, 79, 95-107.	2.5	5
5	Sensing the Sensor: Estimating Camera Properties with Minimal Information. ACM Transactions on Sensor Networks, 2022, 18, 1-26.	3.6	O
6	SplitPath: High throughput using multipath routing in dual-radio Wireless Sensor Networks. Computer Networks, 2022, 207, 108832.	5.1	6
7	A dynamic network coding MAC protocol for power line communication. Telecommunication Systems, 2021, 77, 359-375.	2.5	2
8	A cooperative protocol for pervasive underwater acoustic networks. Wireless Networks, 2021, 27, 1941-1963.	3.0	4
9	Dual Radio Networks: Are Two Disjoint Paths Enough?. IEEE Internet of Things Magazine, 2021, 4, 67-71.	2.6	3
10	OpenFlow data planes performance evaluation. Performance Evaluation, 2021, 147, 102194.	1.2	12
10	OpenFlow data planes performance evaluation. Performance Evaluation, 2021, 147, 102194. Fast Packet Processing with eBPF and XDP. ACM Computing Surveys, 2021, 53, 1-36.	1.2 23.0	12 89
11	Fast Packet Processing with eBPF and XDP. ACM Computing Surveys, 2021, 53, 1-36. A Proposal of a Dynamic Routing Multicast Protocol for Visible Light Communication Networks.,		89
11 12	Fast Packet Processing with eBPF and XDP. ACM Computing Surveys, 2021, 53, 1-36. A Proposal of a Dynamic Routing Multicast Protocol for Visible Light Communication Networks., 2021,,. Ethanol: A Software-Defined Wireless Networking architecture for IEEE 802.11 networks. Computer	23.0	89 O
11 12 13	Fast Packet Processing with eBPF and XDP. ACM Computing Surveys, 2021, 53, 1-36. A Proposal of a Dynamic Routing Multicast Protocol for Visible Light Communication Networks., 2021,,. Ethanol: A Software-Defined Wireless Networking architecture for IEEE 802.11 networks. Computer Communications, 2020, 149, 176-188. Localization Using Ultra Wideband and IEEE 802.15.4 Radios with Nonlinear Bayesian Filters: a Comparative Study. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 99,	23.0 5.1	89 O 20
11 12 13	Fast Packet Processing with eBPF and XDP. ACM Computing Surveys, 2021, 53, 1-36. A Proposal of a Dynamic Routing Multicast Protocol for Visible Light Communication Networks., 2021,,. Ethanol: A Software-Defined Wireless Networking architecture for IEEE 802.11 networks. Computer Communications, 2020, 149, 176-188. Localization Using Ultra Wideband and IEEE 802.15.4 Radios with Nonlinear Bayesian Filters: a Comparative Study. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 99, 571-587. Cellular automata-based byte error correction in QCA. Nano Communication Networks, 2020, 23,	23.0 5.1 3.4	89 0 20
11 12 13 14	Fast Packet Processing with eBPF and XDP. ACM Computing Surveys, 2021, 53, 1-36. A Proposal of a Dynamic Routing Multicast Protocol for Visible Light Communication Networks., 2021,,. Ethanol: A Software-Defined Wireless Networking architecture for IEEE 802.11 networks. Computer Communications, 2020, 149, 176-188. Localization Using Ultra Wideband and IEEE 802.15.4 Radios with Nonlinear Bayesian Filters: a Comparative Study. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 99, 571-587. Cellular automata-based byte error correction in QCA. Nano Communication Networks, 2020, 23, 100278.	23.0 5.1 3.4 2.9	89 0 20 1 8

#	Article	IF	CITATIONS
19	Wireless control using reinforcement learning for practical web QoE. Computer Communications, 2020, 154, 331-346.	5.1	9
20	Grayâ€code adder with parity generator – a novel quantumâ€dot cellular automata implementation. IET Circuits, Devices and Systems, 2020, 14, 243-250.	1.4	4
21	BloomTime: space-efficient stateful tracking of time-dependent network performance metrics. Telecommunication Systems, 2020, 74, 201-223.	2.5	1
22	CAPTAIN: A data collection algorithm for underwater optical-acoustic sensor networks. Computer Networks, 2020, 171, 107145.	5.1	12
23	DYRP-VLC: A dynamic routing protocol for Wireless Ad-Hoc Visible Light Communication Networks. Ad Hoc Networks, 2019, 94, 101941.	5.5	11
24	Integer linear programming formulations for the variable data rate and variable channel bandwidth scheduling problem in wireless networks. Computer Networks, 2019, 165, 106939.	5.1	4
25	FWB: Funneling Wider Bandwidth algorithm for high performance data collection in Wireless Sensor Networks. Computer Communications, 2019, 148, 136-151.	5.1	6
26	Water ping: ICMP for the internet of underwater things. Computer Networks, 2019, 152, 54-63.	5.1	15
27	3DVS: Node scheduling in underwater sensor networks using 3D voronoi diagrams. Computer Networks, 2019, 159, 73-83.	5.1	6
28	Visible Light Communication: Concepts, Applications and Challenges. IEEE Communications Surveys and Tutorials, 2019, 21, 3204-3237.	39.4	317
29	DCTP-A and DCTP-I., 2019,,.		1
30	The internet of light: Impact of colors in LED-to-LED visible light communication systems. Internet Technology Letters, 2019, 2, e78.	1.9	8
31	Hybrid multicriteria algorithms applied to structural design of wireless local area networks. Applied Intelligence, 2018, 48, 3653-3671.	5.3	3
32	Matrix: Multihop Address allocation and dynamic any-To-any Routing for 6LoWPAN. Computer Networks, 2018, 140, 28-40.	5.1	8
33	Advances in Mobile Networking for IoT Leading the 4th Industrial Revolution. Mobile Information Systems, 2018, 2018, 1-3.	0.6	5
34	Dynamic Link Aggregation in Software Defined Networking. , 2018, , .		2
35	COPPER: Increasing Underwater Sensor Network Performance Through Nodes Cooperation. , 2018, , .		1
36	Mobile Matrix: Routing under mobility in IoT, IoMT, and Social IoT. Ad Hoc Networks, 2018, 78, 84-98.	5.5	24

#	Article	IF	CITATIONS
37	Comparison of data center traffic division policies using SDN. , 2018, , .		1
38	CGR: Centrality-based green routing for Low-power and Lossy Networks. Computer Networks, 2017, 129, 117-128.	5.1	7
39	CodeDrip: Improving data dissemination for wireless sensor networks with network coding. Ad Hoc Networks, 2017, 54, 42-52.	5.5	18
40	Network Coding for 5G Network and D2D Communication. , 2017, , .		8
41	Modeling, Analysis and Simulation of Wireless Power Transfer. , 2017, , .		4
42	Embedded IoT Systems: Network, Platform, and Software. Mobile Information Systems, 2017, 2017, 1-2.	0.6	5
43	CodePLC: A Network Coding MAC Protocol for Power Line Communication. , 2016, , .		3
44	Hardware Modules for Packet Interarrival Time Monitoring for Software Defined Measurements. , 2016, , .		2
45	FlushMF: A Transport Protocol Using Multiple Frequencies for Wireless Sensor Network. , 2016, , .		3
46	Efficient virtual network isolation in multi-tenant data centers on commodity ethernet switches. , $2016, , .$		3
47	Wireless scheduling with multiple data rates: From physical interference to disk graphs. Computer Networks, 2016, 106, 64-76.	5.1	4
48	Survey on the design of underwater sensor nodes. Design Automation for Embedded Systems, 2016, 20, 171-190.	1.0	8
49	Programmable Networks—From Software-Defined Radio to Software-Defined Networking. IEEE Communications Surveys and Tutorials, 2015, 17, 1102-1125.	39.4	91
50	Robust Serial Nanocommunication With QCA. IEEE Nanotechnology Magazine, 2015, 14, 464-472.	2.0	42
51	eXtend collection tree protocol. , 2015, , .		9
52	Ethanol: Software defined networking for 802.11 Wireless Networks. , 2015, , .		32
53	Autonomous wireless backbone deployment with bounded number of networked robots., 2014,,.		4
54	Network management through graphs in Software Defined Networks. , 2014, , .		10

#	Article	IF	CITATIONS
55	CodeDrip: Data Dissemination Protocol with Network Coding for Wireless Sensor Networks. Lecture Notes in Computer Science, 2014, , 34-49.	1.3	15
56	On the Development of a Robotic System for Telepresence. , 2013, , .		2
57	NanoRouter: A Quantum-dot Cellular Automata Design. IEEE Journal on Selected Areas in Communications, 2013, 31, 825-834.	14.0	49
58	Data-rate maximization in wireless communication networks., 2013,,.		0
59	Routing IPv6 over wireless networks with low-memory devices. , 2013, , .		1
60	HydroNode., 2012,,.		5
61	Wireless multi-rate scheduling: From physical interference to disk graphs. , 2012, , .		2
62	Robotic Communication Backbone. , 2012, , .		1
63	HydroNode: A low cost, energy efficient, multi purpose node for underwater sensor networks. , 2012, ,		12
64	Scheduling nodes in wireless sensor networks: a Voronoi approach. , 2003, , .		49
65	Performance evaluation of AODV over CSMA and TSCH. Internet Technology Letters, 0, , e276.	1.9	1
66	Processamento Rápido de Pacotes com eBPF e XDP. , 0, , 92-141.		2
67	Tamanho Ótimo do Pacote em Comunicação por Luz VisÃvel Sem Fio. , 0, , .		0
68	On Braess's Paradox and Routing Algorithms. Internet Technology Letters, 0, , e334.	1.9	0