Byron H Farnum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1989290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thickness dependent OER electrocatalysis of epitaxial LaFeO ₃ thin films. Journal of Materials Chemistry A, 2022, 10, 1909-1918.	10.3	12
2	Oxygen Reduction Electrocatalysis with Epitaxially Grown Spinel MnFe ₂ O ₄ and Fe ₃ O ₄ . ACS Catalysis, 2022, 12, 3577-3588.	11.2	16
3	Defining the Role of Cr ³⁺ as a Reductant in the Hydrothermal Synthesis of CuCrO ₂ Delafossite. Inorganic Chemistry, 2022, 61, 8349-8355.	4.0	1
4	Synthesis, characterization, and electrocatalytic activity of bis(pyridylimino)isoindoline Cu(<scp>ii</scp>) and Ni(<scp>ii</scp>) complexes. Dalton Transactions, 2021, 50, 926-935.	3.3	12
5	Group 13 Lewis acid catalyzed synthesis of metal oxide nanocrystals <i>via</i> hydroxide transmetallation. Nanoscale, 2021, 13, 11505-11517.	5.6	1
6	Controlling One-Electron vs Two-Electron Pathways in the Multi-Electron Redox Cycle of Nickel Diethyldithiocarbamate. Inorganic Chemistry, 2021, 60, 13388-13399.	4.0	7
7	Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials, 2020, 3, 66-98.	5.1	540
8	Simultaneous control of soil erosion and arsenic leaching at disturbed land using polyacrylamide modified magnetite nanoparticles. Science of the Total Environment, 2020, 702, 134997.	8.0	22
9	Chemical approaches to artificial photosynthesis: A molecular, dye-sensitized photoanode for O2 production prepared by layer-by-layer self-assembly. Journal of Chemical Physics, 2020, 152, 244706.	3.0	6
10	Influence of Pyridine on the Multielectron Redox Cycle of Nickel Diethyldithiocarbamate. Inorganic Chemistry, 2019, 58, 15371-15384.	4.0	4
11	Solid-State Succinonitrile/Sulfide Hole Transport Layer and Carbon Fabric Counter Electrode for a Quantum Dot Solar Cell. ACS Applied Nano Materials, 2019, 2, 7880-7887.	5.0	5
12	Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II. Journal of the American Chemical Society, 2019, 141, 7926-7933.	13.7	55
13	A donor-chromophore-catalyst assembly for solar CO ₂ reduction. Chemical Science, 2019, 10, 4436-4444.	7.4	23
14	Evidence and Influence of Copper Vacancies in p-Type CuGaO ₂ Mesoporous Films. ACS Applied Energy Materials, 2019, 2, 19-28.	5.1	30
15	Copper Delafossites: Diverse Materials for Solar Energy Conversion and Storage. ECS Meeting Abstracts, 2019, , .	0.0	0
16	Interfacial Deposition of Ru(II) Bipyridine-Dicarboxylate Complexes by Ligand Substitution for Applications in Water Oxidation Catalysis. Journal of the American Chemical Society, 2018, 140, 719-726.	13.7	72
17	The role of layer-by-layer, compact TiO ₂ films in dye-sensitized photoelectrosynthesis cells. Sustainable Energy and Fuels, 2017, 1, 112-118.	4.9	11
18	Generation of Long-Lived Redox Equivalents in Self-Assembled Bilayer Structures on Metal Oxide Electrodes. Journal of Physical Chemistry C, 2017, 121, 5882-5890.	3.1	24

Byron H Farnum

#	Article	IF	CITATIONS
19	Inner Layer Control of Performance in a Dye-Sensitized Photoelectrosynthesis Cell. ACS Applied Materials & Interfaces, 2017, 9, 33533-33538.	8.0	16
20	Structural Characterization and Redox Activity of a Uranyl Dimer and Transition-Metal Complexes of a Tetradentate BIAN Ligand. Organometallics, 2017, 36, 4626-4634.	2.3	13
21	Plasmon-enhanced light-driven water oxidation by a dye-sensitized photoanode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9809-9813.	7.1	23
22	Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition. Journal of the American Chemical Society, 2017, 139, 14518-14525.	13.7	55
23	Self-assembled molecular p/n junctions for applications in dye-sensitized solar energy conversion. Nature Chemistry, 2016, 8, 845-852.	13.6	84
24	Site-Selective Passivation of Defects in NiO Solar Photocathodes by Targeted Atomic Deposition. ACS Applied Materials & amp; Interfaces, 2016, 8, 4754-4761.	8.0	71
25	Iodide Chemistry in Dye-Sensitized Solar Cells: Making and Breaking Iâ^'I Bonds for Solar Energy Conversion. Journal of Physical Chemistry Letters, 2010, 1, 3132-3140.	4.6	143