
Fiona M Watt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1988968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Angiotensin-Converting Enzyme 2 Expression Is Detectable in Keratinocytes, Cutaneous Appendages, and Blood Vessels by Multiplex RNA in Situ Hybridization. Advances in Skin and Wound Care, 2022, Publish Ahead of Print, .	0.5	3
2	An HNF1α truncation associated with maturity-onset diabetes of the young impairs pancreatic progenitor differentiation by antagonizing HNF1β function. Cell Reports, 2022, 38, 110425.	2.9	12
3	Pluripotent Stem Cell-Derived Hepatocytes Inhibit T Cell Proliferation In Vitro through Tryptophan Starvation. Cells, 2022, 11, 24.	1.8	6
4	Dynamic regulation of human epidermal differentiation by adhesive and mechanical forces. Current Topics in Developmental Biology, 2022, , 129-148.	1.0	1
5	Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports, 2022, 17, 1033-1047.	2.3	16
6	Understanding Human Epidermal Stem Cells at Single-Cell Resolution. Journal of Investigative Dermatology, 2022, 142, 2061-2067.	0.3	8
7	Funding: end â€~publish or perish' for postdocs. Nature, 2022, 606, 250-250.	13.7	2
8	Fibroblast Heterogeneity in Healthy and Wounded Skin. Cold Spring Harbor Perspectives in Biology, 2022, 14, a041238.	2.3	7
9	Applications and future directions for optical coherence tomography in dermatology*. British Journal of Dermatology, 2021, 184, 1014-1022.	1.4	47
10	Clinically Relevant Vulnerabilities of Deep Machine Learning Systems for Skin Cancer Diagnosis. Journal of Investigative Dermatology, 2021, 141, 916-920.	0.3	14
11	Developmental cell programs are co-opted in inflammatory skin disease. Science, 2021, 371, .	6.0	264
12	Mentorship in Science: Response to AlShebli etÂal., Nature Communications 2020. Stem Cell Reports, 2021, 16, 1-2.	2.3	15
13	Fibrotic enzymes modulate woundâ€induced skin tumorigenesis. EMBO Reports, 2021, 22, e51573.	2.0	11
14	Differential Expression of Insulin-Like Growth Factor 1 and Wnt Family Member 4 Correlates With Functional Heterogeneity of Human Dermal Fibroblasts. Frontiers in Cell and Developmental Biology, 2021, 9, 628039.	1.8	3
15	Distinct Fibroblast Lineages Give Rise to NG2+ Pericyte Populations in Mouse Skin Development and Repair. Frontiers in Cell and Developmental Biology, 2021, 9, 675080.	1.8	23
16	Employing core regulatory circuits to define cell identity. EMBO Journal, 2021, 40, e106785.	3.5	23
17	Translational control of stem cell function. Nature Reviews Molecular Cell Biology, 2021, 22, 671-690.	16.1	69
18	Plating human iPSC lines on micropatterned substrates reveals role for ITGB1 nsSNV in endoderm formation. Stem Cell Reports, 2021, 16, 2628-2641.	2.3	4

#	Article	IF	CITATIONS
19	How COVID-19 has changed medical research funding. Interface Focus, 2021, 11, 20210025.	1.5	10
20	Gradient boosting approaches can outperform logistic regression for risk prediction in cutaneous allergy. Contact Dermatitis, 2021, , .	0.8	0
21	Mammalian Epidermis: A Compendium of Lipid Functionality. Frontiers in Physiology, 2021, 12, 804824.	1.3	7
22	Role of distinct fibroblast lineages and immune cells in dermal repair following UV radiation-induced tissue damage. ELife, 2021, 10, .	2.8	9
23	Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis. Nature Communications, 2020, 11, 5067.	5.8	35
24	Regulation of ERK basal and pulsatile activity control proliferation and exit from the stem cell compartment in mammalian epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17796-17807.	3.3	50
25	Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology. Nature Communications, 2020, 11, 5671.	5.8	35
26	A blueprint for translational regenerative medicine. Science Translational Medicine, 2020, 12, .	5.8	24
27	Human epidermal stem cell differentiation is modulated by specific lipid subspecies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22173-22182.	3.3	23
28	A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 2020, 20, 174-186.	12.8	2,012
29	What is Al? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 2020, 183, 423-430.	1.4	114
30	Map clusters of diseases to tackle multimorbidity. Nature, 2020, 579, 494-496.	13.7	55
31	UK funders learn from COVID-19 â€~white-water ride'. Nature, 2020, 583, 683-683.	13.7	2
32	Population-scale proteome variation in human induced pluripotent stem cells. ELife, 2020, 9, .	2.8	40
33	Delta-like 1-mediated cis-inhibition of Jagged1/2 signalling inhibits differentiation of human epidermal cells in culture. Scientific Reports, 2019, 9, 10825.	1.6	21
34	Patterning of human epidermal stem cells on undulating elastomer substrates reflects differences in cell stiffness. Acta Biomaterialia, 2019, 87, 256-264.	4.1	39
35	Mechanisms, Hallmarks, and Implications of Stem Cell Quiescence. Stem Cell Reports, 2019, 12, 1190-1200.	2.3	111
36	Mutant Lef1 controls Gata6 in sebaceous gland development and cancer. EMBO Journal, 2019, 38, .	3.5	16

#	Article	IF	CITATIONS
37	Genome-wide association study in frontal fibrosing alopecia identifies four susceptibility loci including HLA-B*07:02. Nature Communications, 2019, 10, 1150.	5.8	82
38	ldentifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors. Cell Reports, 2019, 26, 2078-2087.e3.	2.9	36
39	High-throughput micropatterning platform reveals Nodal-dependent bisection of peri-gastrulation–associated versus preneurulation-associated fate patterning. PLoS Biology, 2019, 17, e3000081.	2.6	34
40	Heterogeneity within Stratified Epithelial Stem Cell Populations Maintains the Oral Mucosa in Response to Physiological Stress. Cell Stem Cell, 2019, 25, 814-829.e6.	5.2	40
41	Micro-scaled topographies direct differentiation of human epidermal stem cells. Acta Biomaterialia, 2019, 84, 133-145.	4.1	20
42	Dynamic Culture Substrates That Mimic the Topography of the Epidermal–Dermal Junction. Tissue Engineering - Part A, 2019, 25, 214-223.	1.6	10
43	Myosin 10 is involved in murine pigmentation. Experimental Dermatology, 2019, 28, 391-394.	1.4	9
44	The role of keratins in modulating carcinogenesis via communication with cells of the immune system. Cell Stress, 2019, 3, 136-138.	1.4	8
45	NOTCH1 signaling in oral squamous cell carcinoma via a TEL2/SERPINE1 axis. Oncotarget, 2019, 10, 6791-6804.	0.8	10
46	Defining Adult Stem Cells by Function, not by Phenotype. Annual Review of Biochemistry, 2018, 87, 1015-1027.	5.0	175
47	An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature, 2018, 556, 376-380.	13.7	47
48	Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. Journal of Investigative Dermatology, 2018, 138, 811-825.	0.3	306
49	Epidermal Wnt signalling regulates transcriptome heterogeneity and proliferative fate in neighbouring cells. Genome Biology, 2018, 19, 3.	3.8	17
50	(More) women in science. Nature Reviews Molecular Cell Biology, 2018, 19, 413-414.	16.1	2
51	Fibroblast heterogeneity: implications for human disease. Journal of Clinical Investigation, 2018, 128, 26-35.	3.9	327
52	The reward of great collaborations. Nature Cell Biology, 2018, 20, 1011-1011.	4.6	0
53	Lrig1 marks a population of gastric epithelial cells capable of long-term tissue maintenance and growth in vitro. Scientific Reports, 2018, 8, 15255.	1.6	17
54	Fibroblast state switching orchestrates dermal maturation and wound healing. Molecular Systems Biology, 2018, 14, e8174.	3.2	113

#	Article	IF	CITATIONS
55	Skin Cell Heterogeneity in Development, Wound Healing, and Cancer. Trends in Cell Biology, 2018, 28, 709-722.	3.6	219
56	Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature, 2018, 557, 322-328.	13.7	129
57	Loxl2 is dispensable for dermal development, homeostasis and tumour stroma formation. PLoS ONE, 2018, 13, e0199679.	1.1	10
58	Bench to bedside: Current advances in regenerative medicine. Current Opinion in Cell Biology, 2018, 55, 59-66.	2.6	14
59	Immunomodulatory role of Keratin 76 in oral and gastric cancer. Nature Communications, 2018, 9, 3437.	5.8	32
60	Homeostasis, regeneration and tumour formation in the mammalian epidermis. International Journal of Developmental Biology, 2018, 62, 571-582.	0.3	36
61	Hair follicle epidermal stem cells define a niche for tactile sensation. ELife, 2018, 7, .	2.8	36
62	Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nature Cell Biology, 2017, 19, 603-613.	4.6	138
63	Common genetic variation drives molecular heterogeneity in human iPSCs. Nature, 2017, 546, 370-375.	13.7	491
64	Repeal and Replace: Adipocyte Regeneration in Wound Repair. Cell Stem Cell, 2017, 20, 424-426.	5.2	23
65	A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nature Communications, 2017, 8, 14744.	5.8	77
66	Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Science Translational Medicine, 2017, 9, .	5.8	512
67	Dermal Blimp1 Acts Downstream of Epidermal TGFβ and Wnt/β-Catenin toÂRegulate Hair Follicle Formation andÂGrowth. Journal of Investigative Dermatology, 2017, 137, 2270-2281.	0.3	75
68	The adaptive immune response to cardiac injury—the true roadblock to effective regenerative therapies?. Npj Regenerative Medicine, 2017, 2, 19.	2.5	49
69	Reply to Chi et al Journal of Investigative Dermatology, 2017, 137, 247-248.	0.3	0
70	A protein phosphatase network controls the temporal and spatial dynamics of differentiation commitment in human epidermis. ELife, 2017, 6, .	2.8	44
71	The Human Cell Atlas. ELife, 2017, 6, .	2.8	1,547
72	Type XVII collagen coordinates proliferation in the interfollicular epidermis. ELife, 2017, 6, .	2.8	85

#	Article	IF	CITATIONS
73	A Novel Automated High-Content Analysis Workflow Capturing Cell Population Dynamics from Induced Pluripotent Stem Cell Live Imaging Data. Journal of Biomolecular Screening, 2016, 21, 887-896.	2.6	17
74	CIRM and UKRMP: Different Ways to Invest in Regenerative Medicine. Cell Stem Cell, 2016, 19, 19-22.	5.2	0
75	Î ² -Catenin Stabilization in Skin Fibroblasts Causes Fibrotic Lesions by Preventing Adipocyte Differentiation of the ReticularÂDermis. Journal of Investigative Dermatology, 2016, 136, 1130-1142.	0.3	79
76	Pelota Regulates Epidermal Differentiation by Modulating BMP and PI3K/AKT SignalingÂPathways. Journal of Investigative Dermatology, 2016, 136, 1664-1671.	0.3	14
77	Engineered Microenvironments to Direct Epidermal Stem Cell Behavior at Single-Cell Resolution. Developmental Cell, 2016, 38, 601-609.	3.1	27
78	Integrative genomic and functional analysis of human oral squamous cell carcinoma cell lines reveals synergistic effects of FAT1 and CASP8 inactivation. Cancer Letters, 2016, 383, 106-114.	3.2	37
79	Alkaline ceramidase 1 is essential for mammalian skin homeostasis and regulating whole-body energy expenditure. Journal of Pathology, 2016, 239, 374-383.	2.1	32
80	Galectin-6 is a novel skin anti-microbial peptide that is modulated by the skin barrier and microbiome. Journal of Dermatological Science, 2016, 84, 97-99.	1.0	3
81	Epidermal \hat{l}^2 -catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages. Nature Communications, 2016, 7, 10537.	5.8	115
82	Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells. Scientific Reports, 2016, 6, 18948.	1.6	65
83	Inhibition of Î ² -catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development (Cambridge), 2016, 143, 2522-35.	1.2	114
84	Compartmentalized Epidermal Activation of \hat{l}^2 -Catenin Differentially Affects Lineage Reprogramming and Underlies Tumor Heterogeneity. Cell Reports, 2016, 14, 269-281.	2.9	53
85	Mimicking the topography of the epidermal–dermal interface with elastomer substrates. Integrative Biology (United Kingdom), 2016, 8, 21-29.	0.6	52
86	Macrophage Infiltration and Alternative Activation during Wound Healing Promote MEK1-Induced Skin Carcinogenesis. Cancer Research, 2016, 76, 805-817.	0.4	30
87	A high-content platform to characterise human induced pluripotent stem cell lines. Methods, 2016, 96, 85-96.	1.9	41
88	Increased Bacterial Load and Expression of Antimicrobial Peptides in Skin of Barrier-Deficient Mice with Reduced Cancer Susceptibility. Journal of Investigative Dermatology, 2016, 136, 99-106.	0.3	26
89	Recognizing the importance of new tools and resources for research. ELife, 2015, 4, .	2.8	2
90	Understanding allergy and cancer risk: what are the barriers?. Nature Reviews Cancer, 2015, 15, 131-132.	12.8	5

#	Article	IF	CITATIONS
91	Innate sensing of microbial products promotes wound-induced skin cancer. Nature Communications, 2015, 6, 5932.	5.8	113
92	Seven Actionable Strategies for Advancing Women in Science, Engineering, and Medicine. Cell Stem Cell, 2015, 16, 221-224.	5.2	36
93	Stem Cell Heterogeneity and Plasticity in Epithelia. Cell Stem Cell, 2015, 16, 465-476.	5.2	144
94	The Androgen Receptor Antagonizes Wnt/β-Catenin Signaling in Epidermal Stem Cells. Journal of Investigative Dermatology, 2015, 135, 2753-2763.	0.3	46
95	Fate of Prominin-1 Expressing Dermal Papilla Cells during Homeostasis, Wound Healing and Wnt Activation. Journal of Investigative Dermatology, 2015, 135, 2926-2934.	0.3	31
96	Understanding fibroblast heterogeneity in the skin. Trends in Cell Biology, 2015, 25, 92-99.	3.6	298
97	Identification of Genes Important for Cutaneous Function Revealed by a Large Scale Reverse Genetic Screen in the Mouse. PLoS Genetics, 2014, 10, e1004705.	1.5	20
98	BLIMP1 Is Required for Postnatal Epidermal Homeostasis but Does Not Define a Sebaceous Gland Progenitor under Steady-State Conditions. Stem Cell Reports, 2014, 3, 620-633.	2.3	49
99	Rewiring of an Epithelial Differentiation Factor, miR-203, to Inhibit Human Squamous Cell Carcinoma Metastasis. Cell Reports, 2014, 9, 104-117.	2.9	49
100	Defining dermal adipose tissue. Experimental Dermatology, 2014, 23, 629-631.	1.4	218
101	Novel skin phenotypes revealed by a genome-wide mouse reverse genetic screen. Nature Communications, 2014, 5, 3540.	5.8	46
102	Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1501-9.	3.3	128
103	Mammalian skin cell biology: At the interface between laboratory and clinic. Science, 2014, 346, 937-940.	6.0	168
104	Markers of Epidermal Stem Cell Subpopulations in Adult Mammalian Skin. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013631-a013631.	2.9	103
105	Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 2014, 32, 795-803.	9.4	492
106	Epidermal barrier defects link atopic dermatitis with altered skin cancer susceptibility. ELife, 2014, 3, e01888.	2.8	51
107	Role of the extracellular matrix in regulating stem cell fate. Nature Reviews Molecular Cell Biology, 2013, 14, 467-473.	16.1	732
108	Decoupling geometrical and chemical cues directing epidermal stem cell fate on polymer brush-based cell micro-patterns. Integrative Biology (United Kingdom), 2013, 5, 899-910.	0.6	45

#	Article	IF	CITATIONS
109	What is the point of large-scale collections of human induced pluripotent stem cells?. Nature Biotechnology, 2013, 31, 875-877.	9.4	58
110	Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature, 2013, 504, 277-281.	13.7	946
111	Monodisperse collagen–gelatin beads as potential platforms for 3D cell culturing. Journal of Materials Chemistry B, 2013, 1, 5128.	2.9	75
112	Genome-wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes. Cell, 2013, 154, 452-464.	13.5	449
113	Sox2 modulates the function of two distinct cell lineages in mouse skin. Developmental Biology, 2013, 382, 15-26.	0.9	54
114	c-MYC-Induced Sebaceous Gland Differentiation Is Controlled by an Androgen Receptor/p53 Axis. Cell Reports, 2013, 3, 427-441.	2.9	66
115	Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells. Development (Cambridge), 2013, 140, 1433-1444.	1.2	82
116	<scp>LRIG1</scp> regulates cadherinâ€dependent contact inhibition directing epithelial homeostasis and preâ€invasive squamous cell carcinoma development. Journal of Pathology, 2013, 229, 608-620.	2.1	34
117	The Interfollicular Epidermis of Adult Mouse Tail Comprises Two Distinct Cell Lineages that Are Differentially Regulated by Wnt, Edaradd, and Lrig1. Stem Cell Reports, 2013, 1, 19-27.	2.3	92
118	Spindle checkpoint deficiency is tolerated by murine epidermal cells but not hair follicle stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2928-2933.	3.3	47
119	Fondation René Touraine. Experimental Dermatology, 2013, 22, 682-693.	1.4	Ο
120	Downregulation of Keratin 76 Expression during Oral Carcinogenesis of Human, Hamster and Mouse. PLoS ONE, 2013, 8, e70688.	1.1	18
121	What does it take to recruit and retain senior women faculty?. ELife, 2013, 2, e00615.	2.8	1
122	The eLife approach to peer review. ELife, 2013, 2, e00799.	2.8	21
123	A year in the life of eLife. ELife, 2013, 2, e01516.	2.8	5
124	eLife and early career researchers. ELife, 2013, 2, e01633.	2.8	2
125	FRMD4A Upregulation in Human Squamous Cell Carcinoma Promotes Tumor Growth and Metastasis and Is Associated with Poor Prognosis. Cancer Research, 2012, 72, 3424-3436.	0.4	49
126	Epidermal Cadm1 Expression Promotes Autoimmune Alopecia via Enhanced T Cell Adhesion and Cytotoxicity. Journal of Immunology, 2012, 188, 1514-1522.	0.4	20

#	Article	IF	CITATIONS
127	Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biology, 2012, 14, 401-408.	4.6	350
128	Exons 5–15 of Kazrin Are Dispensable for Murine Epidermal Morphogenesis and Homeostasis. Journal of Investigative Dermatology, 2012, 132, 1977-1987.	0.3	3
129	Clonal Growth of Dermal Papilla Cells in Hydrogels Reveals Intrinsic Differences between Sox2-Positive and -Negative Cells In Vitro and In Vivo. Journal of Investigative Dermatology, 2012, 132, 1084-1093.	0.3	66
130	Lineage Tracing. Cell, 2012, 148, 33-45.	13.5	608
131	Extracellular-matrix tethering regulates stem-cell fate. Nature Materials, 2012, 11, 642-649.	13.3	1,346
132	Diverse epigenetic strategies interact to control epidermal differentiation. Nature Cell Biology, 2012, 14, 753-763.	4.6	139
133	Efficient Differentiation of Embryonic Stem Cells into Mesodermal Precursors by BMP, Retinoic Acid and Notch Signalling. PLoS ONE, 2012, 7, e36405.	1.1	36
134	β atenin determines upper airway progenitor cell fate and preinvasive squamous lung cancer progression by modulating epithelial–mesenchymal transition. Journal of Pathology, 2012, 226, 575-587.	2.1	66
135	Epithelial stem cells, wound healing and cancer. Nature Reviews Cancer, 2012, 12, 170-180.	12.8	382
136	Mimicking normal tissue architecture and perturbation in cancer with engineered micro-epidermis. Biomaterials, 2012, 33, 5221-5229.	5.7	44
137	Sin3a is essential for the genome integrity and viability of pluripotent cells. Developmental Biology, 2012, 363, 62-73.	0.9	62
138	Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin. Developmental Biology, 2012, 366, 290-297.	0.9	23
139	Launching eLife, Part 1. ELife, 2012, 1, e00270.	2.8	9
140	Launching eLife, Part 2. ELife, 2012, 1, e00365.	2.8	4
141	Cell-Extracellular Matrix Interactions in Normal and Diseased Skin. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005124-a005124.	2.3	284
142	Hair follicle dermal papilla cells at a glance. Journal of Cell Science, 2011, 124, 1179-1182.	1.2	375
143	The Basement Membrane of Hair Follicle Stem Cells Is a Muscle Cell Niche. Cell, 2011, 144, 577-589.	13.5	288
144	High-throughput stem-cell niches. Nature Methods, 2011, 8, 915-916.	9.0	14

#	Article	IF	CITATIONS
145	Rac1 Deletion Causes Thymic Atrophy. PLoS ONE, 2011, 6, e19292.	1.1	8
146	Shape-Induced Terminal Differentiation of Human Epidermal Stem Cells Requires p38 and Is Regulated by Histone Acetylation. PLoS ONE, 2011, 6, e27259.	1.1	52
147	Stem cells: on the front line. Journal of Cell Science, 2011, 124, 3527-3528.	1.2	1
148	Reprogramming adult dermis to a neonatal state through epidermal activation of β-catenin. Development (Cambridge), 2011, 138, 5189-5199.	1.2	137
149	The RNA–Methyltransferase Misu (NSun2) Poises Epidermal Stem Cells to Differentiate. PLoS Genetics, 2011, 7, e1002403.	1.5	160
150	Dose and context dependent effects of Myc on epidermal stem cell proliferation and differentiation. EMBO Molecular Medicine, 2010, 2, 16-25.	3.3	31
151	Exploiting the superior protein resistance of polymer brushes to control single cell adhesion and polarisation at the micron scale. Biomaterials, 2010, 31, 5030-5041.	5.7	99
152	Human Skin Aging Is Associated with Reduced Expression of the Stem Cell Markers β1 Integrin and MCSP. Journal of Investigative Dermatology, 2010, 130, 604-608.	0.3	100
153	Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature Cell Biology, 2010, 12, 711-718.	4.6	414
154	Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nature Protocols, 2010, 5, 898-911.	5.5	174
155	Xenopus Kazrin interacts with ARVCF-catenin, spectrin and p190B RhoGAP, and modulates RhoA activity and epithelial integrity. Journal of Cell Science, 2010, 123, 4128-4144.	1.2	19
156	JCS in 2010 – Ringing in the Changes. Journal of Cell Science, 2010, 123, 1-1.	1.2	1
157	Adult epidermal Notch activity induces dermal accumulation of T cells and neural crest derivatives through upregulation of jagged 1. Development (Cambridge), 2010, 137, 3569-3579.	1.2	34
158	Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate. Proceedings of the United States of America, 2010, 107, 19903-19908.	3.3	69
159	Cell Biology of Tissues and Tumors. Molecular Biology of the Cell, 2010, 21, 3824-3824.	0.9	Ο
160	2009 Winner: Ravi Desai. Journal of Cell Science, 2010, 123, 815-815.	1.2	0
161	The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 155-163.	1.8	145
162	Genomic gain of 5p15 leads to over-expression of Misu (NSUN2) in breast cancer. Cancer Letters, 2010, 289, 71-80.	3.2	80

#	Article	IF	CITATIONS
163	Differential sensitivity of epidermal cell subpopulations to β-catenin-induced ectopic hair follicle formation. Developmental Biology, 2010, 343, 40-50.	0.9	44
164	Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development (Cambridge), 2009, 136, 2815-2823.	1.2	297
165	Integrin Special Issue. Journal of Cell Science, 2009, 122, 157-157.	1.2	1
166	Necl2 regulates epidermal adhesion and wound repair. Development (Cambridge), 2009, 136, 3505-3514.	1.2	30
167	KazrinE is a desmosome-associated liprin that colocalises with acetylated microtubules. Journal of Cell Science, 2009, 122, 4035-4041.	1.2	30
168	An Activating β1 Integrin Mutation Increases the Conversion of Benign to Malignant Skin Tumors. Cancer Research, 2009, 69, 1334-1342.	0.4	37
169	Stem cells are dispensable for lung homeostasis but restore airways after injury. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9286-9291.	3.3	216
170	Balancing Work and Life: A Conversation with Fiona Watt. Stem Cells, 2009, 27, 762-763.	1.4	0
171	PI3-kinase-dependent activation of apoptotic machinery occurs on commitment of epidermal keratinocytes to terminal differentiation. Cell Research, 2009, 19, 328-339.	5.7	35
172	Lrig1 Expression Defines a Distinct Multipotent Stem Cell Population in Mammalian Epidermis. Cell Stem Cell, 2009, 4, 427-439.	5.2	450
173	Epidermal stem cell diversity and quiescence. EMBO Molecular Medicine, 2009, 1, 260-267.	3.3	162
174	Autophagy mediates the mitotic senescence transition. Genes and Development, 2009, 23, 798-803.	2.7	883
175	KazrinA is required for axial elongation and epidermal integrity in <i>Xenopus tropicalis</i> . Developmental Dynamics, 2008, 237, 1718-1725.	0.8	11
176	Characterization of Bipotential Epidermal Progenitors Derived from Human Sebaceous Gland: Contrasting Roles of c-Myc and <i>β</i> -Catenin. Stem Cells, 2008, 26, 1241-1252.	1.4	117
177	The Vitamin D Receptor Is Required for Mouse Hair Cycle Progression but not for Maintenance of the Epidermal Stem Cell Compartment. Journal of Investigative Dermatology, 2008, 128, 2113-2117.	0.3	24
178	Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFκB and cooperating with Stat3. Nature Cell Biology, 2008, 10, 194-201.	4.6	127
179	MYC in mammalian epidermis: how can an oncogene stimulate differentiation?. Nature Reviews Cancer, 2008, 8, 234-242.	12.8	144
180	Role of the Notch Ligand Delta1 in Embryonic and Adult Mouse Epidermis. Journal of Investigative Dermatology, 2008, 128, 825-832.	0.3	61

#	Article	IF	CITATIONS
181	Epidermal stem cells are retained <i>in vivo</i> throughout skin aging. Aging Cell, 2008, 7, 250-259.	3.0	177
182	Epidermal Notch signalling: differentiation, cancer and adhesion. Current Opinion in Cell Biology, 2008, 20, 171-179.	2.6	264
183	Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for β-catenin and Notch signalling. Developmental Biology, 2008, 324, 55-67.	0.9	85
184	A stem cell gene expression profile of human squamous cell carcinomas. Cancer Letters, 2008, 272, 23-31.	3.2	48
185	Kazrin regulates keratinocyte cytoskeletal networks, intercellular junctions and differentiation. Journal of Cell Science, 2008, 121, 3561-3569.	1.2	37
186	The Vitamin D Receptor Is a Wnt Effector that Controls Hair Follicle Differentiation and Specifies Tumor Type in Adult Epidermis. PLoS ONE, 2008, 3, e1483.	1.1	123
187	Role of Â-catenin in Epidermal Stem Cell Expansion, Lineage Selection, and Cancer. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 503-512.	2.0	58
188	Dual Role of Inactivating Lef1 Mutations in Epidermis: Tumor Promotion and Specification of Tumor Type. Cancer Research, 2007, 67, 2916-2921.	0.4	69
189	Syntenin mediates Delta1-induced cohesiveness of epidermal stem cells in culture. Journal of Cell Science, 2007, 120, 2944-2952.	1.2	56
190	Mice deficient in involucrin, envoplakin, and periplakin have a defective epidermal barrier. Journal of Cell Biology, 2007, 179, 1599-1612.	2.3	131
191	Sic Transit Gloria: Farewell to the Epidermal Transit Amplifying Cell?. Cell Stem Cell, 2007, 1, 371-381.	5.2	152
192	Epidermal Stem Cells Are Defined by Global Histone Modifications that Are Altered by Myc-Induced Differentiation. PLoS ONE, 2007, 2, e763.	1.1	89
193	Activin A is an anticatabolic autocrine cytokine in articular cartilage whose production is controlled by fibroblast growth factor 2 and NFâ€î°B. Arthritis and Rheumatism, 2007, 56, 3715-3725.	6.7	23
194	Expression of Notch pathway genes in mammalian epidermis and modulation by β-Catenin. Developmental Dynamics, 2007, 236, 1595-1601.	0.8	40
195	Epidermal Deletion of Rac1 Causes Stem Cell Depletion, Irrespective of whether Deletion Occurs during Embryogenesis or Adulthood. Journal of Investigative Dermatology, 2007, 127, 1555-1557.	0.3	14
196	Women in cell biology: how personal lives shape careers. Nature Reviews Molecular Cell Biology, 2006, 7, 378-380.	16.1	5
197	HAN11 binds mDia1 and controls GLI1 transcriptional activity. Journal of Dermatological Science, 2006, 44, 11-20.	1.0	32
198	Epidermal stem cells: an update. Current Opinion in Genetics and Development, 2006, 16, 518-524.	1.5	173

#	Article	IF	CITATIONS
199	Cultivation and Retroviral Infection of Human Epidermal Keratinocytes. , 2006, , 133-138.		8
200	Human sebaceous tumors harbor inactivating mutations in LEF1. Nature Medicine, 2006, 12, 395-397.	15.2	149
201	New roles for integrins in squamous-cell carcinoma. Nature Reviews Cancer, 2006, 6, 175-183.	12.8	174
202	Women in cell biology: getting to the top. Nature Reviews Molecular Cell Biology, 2006, 7, 287-290.	16.1	10
203	The RNA Methyltransferase Misu (NSun2) Mediates Myc-Induced Proliferation and Is Upregulated in Tumors. Current Biology, 2006, 16, 971-981.	1.8	229
204	The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development (Cambridge), 2006, 133, 3027-3037.	1.2	185
205	Jagged 1 is a β-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development (Cambridge), 2006, 133, 4427-4438.	1.2	202
206	Identification of Novel Keratinocyte Differentiation Modulating Compounds by High-Throughput Screening. Journal of Biomolecular Screening, 2006, 11, 977-984.	2.6	14
207	Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. Journal of Cell Biology, 2006, 172, 139-149.	2.3	108
208	Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11958-11963.	3.3	286
209	Role of LIM Kinases in Normal and Psoriatic Human Epidermis. Molecular Biology of the Cell, 2006, 17, 1888-1896.	0.9	44
210	Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nature Genetics, 2005, 37, 520-525.	9.4	148
211	Different Consequences of Î ² 1 Integrin Deletion in Neonatal and Adult Mouse Epidermis Reveal a Context-Dependent Role of Integrins in Regulating Proliferation, Differentiation, and Intercellular Communication. Journal of Investigative Dermatology, 2005, 125, 1215-1227.	0.3	53
212	Suprabasal α5β1 integrin expression stimulates formation of epidermal squamous cell carcinomas without disrupting TGFI² signaling or inducing spindle cell tumors. Molecular Carcinogenesis, 2005, 44, 60-66.	1.3	15
213	Emiliana Borrelli. Journal of Cell Science, 2005, 118, 3223-3224.	1.2	3
214	Anna El'skaya. Journal of Cell Science, 2005, 118, 1777-1778.	1.2	3
215	Fran Balkwill. Journal of Cell Science, 2005, 118, 1339-1340.	1.2	4
216	Elisabetta Dejana. Journal of Cell Science, 2005, 118, 2789-2790.	1.2	3

#	Article	IF	CITATIONS
217	β-Catenin and Hedgehog Signal Strength Can Specify Number and Location of Hair Follicles in Adult Epidermis without Recruitment of Bulge Stem Cells. Developmental Cell, 2005, 9, 121-131.	3.1	223
218	Topo IIα reporter mice reveal proliferative regions in the epidermis and small intestine. FEBS Letters, 2005, 579, 6479-6485.	1.3	1
219	Stem Cell Depletion Through Epidermal Deletion of Rac1. Science, 2005, 309, 933-935.	6.0	243
220	Human Epidermal Stem Cells. , 2004, , 245-256.		1
221	Joyce Taylor-Papadimitriou. Journal of Cell Science, 2004, 117, 371-372.	1.2	3
222	Penelope Jeggo. Journal of Cell Science, 2004, 117, 5459-5460.	1.2	3
223	Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development (Cambridge), 2004, 131, 1787-1799.	1.2	298
224	Switch from αvβ5 to αvβ6 integrin expression protects squamous cell carcinomas from anoikis. Journal of Cell Biology, 2004, 166, 419-431.	2.3	95
225	Transient activation of FOXN1 in keratinocytes induces a transcriptional programme that promotes terminal differentiation: contrasting roles of FOXN1 and Akt. Journal of Cell Science, 2004, 117, 4157-4168.	1.2	84
226	Julia Polak. Journal of Cell Science, 2004, 117, 5195-5196.	1.2	1
227	Elaine Fuchs. Journal of Cell Science, 2004, 117, 4877-4879.	1.2	3
228	Non-profit publishing: open access and the end of copyright transfer. Journal of Cell Science, 2004, 117, 1-1.	1.2	6
229	Kazrin, a novel periplakin-interacting protein associated with desmosomes and the keratinocyte plasma membrane. Journal of Cell Biology, 2004, 166, 653-659.	2.3	54
230	Amparo Cano. Journal of Cell Science, 2004, 117, 3075-3076.	1.2	3
231	Xin Lu. Journal of Cell Science, 2004, 117, 6265-6266.	1.2	3
232	Danielle Dhouailly. Journal of Cell Science, 2004, 117, 1873-1874.	1.2	3
233	Janet Heasman. Journal of Cell Science, 2004, 117, 1617-1618.	1.2	2
234	Sharyn Endow. Journal of Cell Science, 2004, 117, 655-656.	1.2	2

#	Article	IF	CITATIONS
235	Epidermal Label-Retaining Cells: Background and Recent Applications. Journal of Investigative Dermatology Symposium Proceedings, 2004, 9, 196-201.	0.8	83
236	Expression of Activated MEK1 in Differentiating Epidermal Cells Is Sufficient to Generate Hyperproliferative and Inflammatory Skin Lesions. Journal of Investigative Dermatology, 2004, 123, 503-515.	0.3	79
237	Sequence variation in the I-like domain of the \hat{I}^21 integrin subunit in human oral squamous cell carcinomas. Cancer Letters, 2004, 213, 189-194.	3.2	10
238	Unexpected Hedgehog–Wnt interactions in epithelial differentiation. Trends in Molecular Medicine, 2004, 10, 577-580.	3.5	48
239	Keratinocyte Differentiation Is Regulated by the Rho and ROCK Signaling Pathway. Current Biology, 2003, 13, 2185-2189.	1.8	111
240	Contribution of stem cells and differentiated cells to epidermal tumours. Nature Reviews Cancer, 2003, 3, 444-451.	12.8	313
241	Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development (Cambridge), 2003, 130, 2793-2808.	1.2	163
242	Suprabasal α6β4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFβ signalling. Journal of Cell Science, 2003, 116, 3783-3791.	1.2	84
243	Regulation of Interleukin-1α Expression by Integrins and Epidermal Growth Factor Receptor in Keratinocytes from a Mouse Model of Inflammatory Skin Disease. Journal of Biological Chemistry, 2003, 278, 19798-19807.	1.6	41
244	A tumor-associated β1 integrin mutation that abrogates epithelial differentiation control. Journal of Cell Biology, 2003, 160, 589-596.	2.3	67
245	Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1- and EGF-dependent signalling pathways. Journal of Cell Science, 2003, 116, 3227-3238.	1.2	208
246	Manipulation of stem cell proliferation and lineage commitment:visualisation of label-retaining cells in wholemounts of mouse epidermis. Development (Cambridge), 2003, 130, 5241-5255.	1.2	382
247	Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development (Cambridge), 2003, 130, 6049-6063.	1.2	129
248	The stem cell compartment in human interfollicular epidermis. Journal of Dermatological Science, 2002, 28, 173-180.	1.0	100
249	Interaction of periplakin and envoplakin with intermediate filaments. Journal of Cell Science, 2002, 115, 5027-5037.	1.2	75
250	Designer skin: lineage commitment in postnatal epidermis. Trends in Cell Biology, 2002, 12, 185-192.	3.6	182
251	NEW EMBO MEMBER'S REVIEW: Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO Journal, 2002, 21, 3919-3926.	3.5	572
252	Expression of ΔNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development (Cambridge), 2002, 129, 95-109.	1.2	259

#	Article	IF	CITATIONS
253	A crucial role of \hat{I}^21 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development (Cambridge), 2002, 129, 2303-2315.	1.2	232
254	Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development (Cambridge), 2002, 129, 95-109.	1.2	119
255	A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development (Cambridge), 2002, 129, 2303-15.	1.2	111
256	Dermal Fibroblast-Derived Growth Factors Restore the Ability of β1 Integrin-Deficient Embryonal Stem Cells to Differentiate into Keratinocytes. Developmental Biology, 2001, 231, 321-333.	0.9	54
257	Delta regulates keratinocyte spreading and motility independently of differentiation. Mechanisms of Development, 2001, 107, 133-140.	1.7	54
258	Stem cell fate and patterning in mammalian epidermis. Current Opinion in Genetics and Development, 2001, 11, 410-417.	1.5	233
259	Paraneoplastic Pemphigus Sera React Strongly with Multiple Epitopes on the Various Regions of Envoplakin and Periplakin, Except for the C-Terminal Homologous Domain of Periplakin. Journal of Investigative Dermatology, 2001, 116, 556-563.	0.3	65
260	p19 ARF â€independent induction of p53 and cell cycle arrest by Raf in murine keratinocytes. EMBO Reports, 2001, 2, 145-150.	2.0	56
261	c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Current Biology, 2001, 11, 558-568.	1.8	332
262	Cutting Edge: Amelioration of Kidney Disease in a Transgenic Mouse Model of Lupus Nephritis by Administration of the Caspase Inhibitor Carbobenzoxy-Valyl-Alanyl-Aspartyl-(β-o-methyl)-Fluoromethylketone. Journal of Immunology, 2001, 167, 2452-2455.	0.4	45
263	Epithelial Cell Differentiation Pathways in the Human Prostate: Identification of Intermediate Phenotypes by Keratin Expression. Journal of Histochemistry and Cytochemistry, 2001, 49, 271-278.	1.3	146
264	Gene Targeting of Envoplakin, a Cytoskeletal Linker Protein and Precursor of the Epidermal Cornified Envelope. Molecular and Cellular Biology, 2001, 21, 7047-7053.	1.1	64
265	A role for mitogen-activated protein kinase activation by integrins in the pathogenesis of psoriasis. Journal of Clinical Investigation, 2001, 108, 527-536.	3.9	145
266	Proliferative Heterogeneity in the Human Prostate: Evidence for Epithelial Stem Cells. Laboratory Investigation, 2000, 80, 1243-1250.	1.7	161
267	Stimulation of human epidermal differentiation by Delta–Notch signalling at the boundaries of stem-cell clusters. Current Biology, 2000, 10, 491-500.	1.8	423
268	Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Current Biology, 2000, 10, 1447-1450.	1.8	144
269	Epidermal Stem Cells as Targets for Gene Transfer. Human Gene Therapy, 2000, 11, 2261-2266.	1.4	41
270	Structure and Regulation of the Envoplakin Gene. Journal of Biological Chemistry, 2000, 275, 19857-19865.	1.6	21

#	Article	IF	CITATIONS
271	β1 Integrins Regulate Keratinocyte Adhesion and Differentiation by Distinct Mechanisms. Molecular Biology of the Cell, 2000, 11, 453-466.	0.9	137
272	Subcellular Distribution of Envoplakin and Periplakin. Journal of Cell Biology, 2000, 151, 573-586.	2.3	87
273	The EGF Receptor Provides an Essential Survival Signal for SOS-Dependent Skin Tumor Development. Cell, 2000, 102, 211-220.	13.5	288
274	The α2 and α5 integrin genes: identification of transcription factors that regulate promoter activity in epidermal keratinocytes. FEBS Letters, 2000, 474, 201-207.	1.3	39
275	PA-FABP, a novel marker of human epidermal transit amplifying cells revealed by 2D protein gel electrophoresis and cDNA array hybridisation. FEBS Letters, 2000, 486, 149-154.	1.3	44
276	?1B integrin subunit contains a double lysine motif that can cause accumulation within the endoplasmic reticulum. Journal of Cellular Biochemistry, 2000, 78, 97-111.	1.2	6
277	Stem Cell Manifesto. Cell, 1999, 96, 470-473.	13.5	3
278	Envoplakin, a Possible Candidate Gene for Focal NEPPK/Esophageal Cancer (TOC): The Integration of Genetic and Physical Maps of the TOC Region on 17q25. Genomics, 1999, 59, 234-242.	1.3	34
279	β-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development (Cambridge), 1999, 126, 2285-2298.	1.2	211
280	The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development (Cambridge), 1999, 126, 2409-2418.	1.2	312
281	Optimised retroviral infection of human epidermal keratinocytes: long-term expression of transduced integrin gene following grafting on to SCID mice. Gene Therapy, 1998, 5, 913-922.	2.3	59
282	Comparison of integrin, cadherin, and catenin expression in squamous cell carcinomas of the oral cavity. , 1998, 186, 8-16.		107
283	Envoplakin and Periplakin are Components of the Paraneoplastic Pemphigus Antigen Complex. Journal of Investigative Dermatology, 1998, 111, 1236-1238.	0.3	92
284	Role of integrins in mouse eyelid development: studies in normal embryos and embryos in which there is a failure of eyelid fusion. Mechanisms of Development, 1998, 78, 37-45.	1.7	22
285	Calcium-Induced Intercellular Adhesion of Keratinocytes Does not Involve Accumulation of β ₁ Integrins at Cell-Cell Contacts and Does not Involve Changes in the Levels or Phosphorylation of Catenins. Cell Adhesion and Communication, 1998, 5, 137-149.	1.7	15
286	The Periplakin Gene Maps to 16p13.3 in Human and 16A–B1 in Mouse. Genomics, 1998, 49, 157-159.	1.3	3
287	Epidermal stem cells: markers, patterning and the control of stem cell fate. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 831-837.	1.8	342
288	Periplakin, a Novel Component of Cornified Envelopes and Desmosomes That Belongs to the Plakin Family and Forms Complexes with Envoplakin. Journal of Cell Biology, 1997, 139, 1835-1849.	2.3	192

#	Article	IF	CITATIONS
289	The Epidermal Stem Cell Compartment: Variation in Expression Levels of E–Cadherin and Catenins Within the Basal Layer of Human Epidermis. Journal of Histochemistry and Cytochemistry, 1997, 45, 867-874.	1.3	80
290	The plakin family: versatile organizers of cytoskeletal architecture. Current Opinion in Genetics and Development, 1997, 7, 392-397.	1.5	204
291	Antinuclear Autoantibodies and Lupus Nephritis in Transgenic Mice Expressing Interferon Î ³ in the Epidermis. Journal of Experimental Medicine, 1997, 186, 1451-1459.	4.2	147
292	Changes in the expression of alphav integrins in oral squamous cell carcinomas. Journal of Oral Pathology and Medicine, 1997, 26, 63-68.	1.4	125
293	Transgenic Mice Expressing IFN-Î ³ in the Epidermis Have Eczema, Hair Hypopigmentation, and Hair Loss. Journal of Investigative Dermatology, 1997, 108, 412-422.	0.3	142
294	Chromosomal Localisation of the Human Envoplakin Gene (EVPL) to the Region of the Tylosis Oesophageal Cancer Gene (TOCG) on 17q25. Genomics, 1996, 37, 381-385.	1.3	29
295	Differentiation of Embryonal Stem Cells into Keratinocytes: Comparison of Wild-Type and β1Integrin-Deficient Cells. Developmental Biology, 1996, 179, 184-196.	0.9	158
296	Altered expression of CD44 isoforms in squamous-cell carcinomas and cell lines derived from them. , 1996, 66, 457-463.		42
297	Transfection of β4Integrin Subunit into a Neoplastic Keratinocyte Line Fails to Restore Terminal Differentiation Capacity or Influence Proliferation. Cell Adhesion and Communication, 1996, 4, 307-316.	1.7	9
298	Functional Significance of CD9 Association with \hat{I}^21 Integrins in Human Epidermal Keratinocytes. Cell Adhesion and Communication, 1996, 4, 297-305.	1.7	95
299	Expression of a dominant negative cadherin mutant inhibits proliferation and stimulates terminal differentiation of human epidermal keratinocytes. Journal of Cell Science, 1996, 109, 3013-3023.	1.2	142
300	Identification of an 80kD Protein Associated with the α3β1 Integrin as a Proteolytic Fragment of the α3 Subunit: Studies with Human Keratinocytes. Cell Adhesion and Communication, 1995, 3, 243-255.	1.7	7
301	Calcium-Induced Changes in Distribution and Solubility of Cadherins, Integrins and Their Associated Cytoplasmic Proteins in Human Keratinocytes. Cell Adhesion and Communication, 1995, 3, 201-215.	1.7	61
302	Integrin Expression by Human Epidermal Keratinocytes Can Be Modulated by Interferon-γ, Transforming Growth Factor-β, Tumor Necrosis Factor-α, and Culture on a Dermal Equivalent. Journal of Investigative Dermatology, 1995, 104, 260-265.	0.3	38
303	Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell, 1995, 83, 957-968.	13.5	298
304	Stem cell patterning and fate in human epidermis. Cell, 1995, 80, 83-93.	13.5	758
305	CD44 is the major peanut lectin-binding glycoprotein of human epidermal keratinocytes and plays a role in intercellular adhesion. Journal of Cell Science, 1995, 108, 1959-1970.	1.2	66
306	Adhesion of Human Epidermal Keratinocytes to Laminin. Cell Adhesion and Communication, 1994, 2, 309-318.	1.7	14

#	Article	IF	CITATIONS
307	Studies with cultured human epidermal keratinocytes: Potential relevance to corneal wound healing. Eye, 1994, 8, 161-162.	1.1	8
308	Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation. Journal of Cell Biology, 1994, 124, 589-600.	2.3	210
309	Cell Adhesion: Fibronectin and integrin knockouts come unstuck. Current Biology, 1994, 4, 270-272.	1.8	33
310	Integrin expression in normal, hyperplastic, dysplastic, and malignant oral epithelium. Journal of Pathology, 1993, 169, 235-243.	2.1	137
311	Loss of α6 and β4 integrin subunits coincides with loss of basement membrane components in oral squamous cell carcinomas. Journal of Pathology, 1993, 171, 183-190.	2.1	62
312	Towards gene therapy for haemophilia B using primary human keratinocytes. Nature Genetics, 1993, 3, 180-183.	9.4	199
313	Changes in the Distribution of Actin-Associated Proteins During Epidermal Wound Healing. Journal of Investigative Dermatology, 1993, 100, 785-789.	0.3	30
314	Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell, 1993, 73, 713-724.	13.5	1,057
315	Comparison of integrin expression and terminal differentiation capacity in cell lines derived from oral squamous cell carcinomas. Carcinogenesis, 1993, 14, 2171-2176.	1.3	54
316	Evidence Against a Major Role for Integrins in Calcium-Dependent Intercellular Adhesion of Epidermal Keratinocytes. Cell Adhesion and Communication, 1993, 1, 55-66.	1.7	56
317	Regulation of development and differentiation by the extracellular matrix. Development (Cambridge), 1993, 117, 1183-1198.	1.2	1,067
318	Regulation of keratinocyte terminal differentiation by integrin-extracellular matrix interactions. Journal of Cell Science, 1993, 106, 175-182.	1.2	129
319	Functional down-regulation of α5β1 integrin in keratinocytes is reversible but commitment to terminal differentiation is not. Journal of Cell Science, 1993, 106, 1131-1138.	1.2	50
320	Characterisation of Eight Monoclonal Antibodies to Involucrin. Hybridoma, 1992, 11, 367-379.	0.9	66
321	Changes in cell-surface carbohydrate during terminal differentiation of human epidermal keratinocytes. Biochemical Society Transactions, 1992, 20, 285-288.	1.6	11
322	Kalinin, epiligrin and GB3 antigen: kalinepiligrinin-3?. Current Biology, 1992, 2, 106-107.	1.8	10
323	Transcriptional and post-translational regulation of beta 1 integrin expression during keratinocyte terminal differentiation Journal of Biological Chemistry, 1992, 267, 14852-14858.	1.6	87
324	Expression of E-cadherin, P-cadherin and involucrin by normal and neoplastic keratinocytes in culture. Carcinogenesis, 1991, 12, 1345-1349.	1.3	36

#	Article	IF	CITATIONS
325	Two strains of human keratinocytes transfected with HPV16 DNA: comparison with the normal parental cells. Carcinogenesis, 1991, 12, 277-284.	1.3	33
326	Integrin expression during human epidermal development <i>in vivo</i> and <i>in vitro</i> . Development (Cambridge), 1991, 112, 193-206.	1.2	180
327	Changes in the abundance and distribution of actin and associated proteins during terminal differentiation of human epidermal kératinocytes. Journal of Cell Science, 1991, 100, 153-165.	1.2	39
328	Decreased expression of fibronectin and the <i>α</i> 5 <i>β 1</i> integrin during terminal differentiation of human keratinocytes. Journal of Cell Science, 1991, 98, 225-232.	1.2	65
329	Effect of Culture Environment on Terminal Differentiation of Human Epidermal Keratinocytes. , 1991, , 271-281.		0
330	Characterisation of the peanut lectin-binding glycoproteins of human epidermal keratinocytes. Differentiation, 1990, 43, 139-145.	1.0	9
331	Changes in keratinocyte adhesion during terminal differentiation: Reduction in fibronectin binding precedes α5β1 integrin loss from the cell surface. Cell, 1990, 63, 425-435.	13.5	438
332	Pentapeptide inhibitor of epidermal mitosis: production and responsiveness in cultures of normal, transformed and neoplastic human keratinocytes. Carcinogenesis, 1989, 10, 2249-2253.	1.3	17
333	Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature, 1989, 340, 307-309.	13.7	403
334	Terminal differentiation of epidermal keratinocytes. Current Opinion in Cell Biology, 1989, 1, 1107-1115.	2.6	259
335	Stem cells: the generation and maintenance of cellular diversity. Development (Cambridge), 1989, 106, 619-633.	1.2	437
336	Onset of expression of peanut lectin-binding glycoproteins is correlated with stratification of keratinocytes during human epidermal development <i>in vivo</i> and <i>in vitro</i> . Journal of Cell Science, 1989, 94, 355-359.	1.2	33
337	Prolonged expression of differentiated phenotype by chondrocytes cultured at low density on a composite substrate of collagen and agarose that restricts cell spreading. Differentiation, 1988, 38, 140-147.	1.0	66
338	The epidermal keratinocyte. BioEssays, 1988, 8, 163-167.	1.2	38
339	A Model for in Vitro Studies of Epidermal Homeostasis: Proliferation and Involucrin Synthesis by Cultured Human Keratinocytes During Recovery After Stripping Off the Suprabasal Layers. Journal of Investigative Dermatology, 1988, 90, 739-743.	0.3	45
340	Influence of cytochalasin d-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes. Experimental Cell Research, 1988, 178, 199-210.	1.2	97
341	The peanut lectin-binding glycoproteins of human epidermal keratinocytes. Experimental Cell Research, 1988, 177, 247-256.	1.2	26
342	Epidermal stem cells in culture. Journal of Cell Science, 1988, 1988, 85-94.	1.2	29

#	Article	IF	CITATIONS
343	Proliferation and terminal differentiation of human epidermal keratinocytes in culture. Biochemical Society Transactions, 1988, 16, 666-668.	1.6	26
344	Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. Journal of Cell Science, 1988, 89, 373-378.	1.2	153
345	Influence of Cell Shape and Adhesiveness On Stratification and Terminal Differentiation of Human Keratinocytes in Culture. Journal of Cell Science, 1987, 1987, 313-326.	1.2	42
346	Calcium-induced changes in cytoskeleton and motility of cultured human keratinocytes. Experimental Cell Research, 1987, 172, 43-53.	1.2	75
347	Patterns of junctional communication in skin: Studies on cultured keratinocytes. Experimental Cell Research, 1987, 173, 431-438.	1.2	27
348	Measurement of the Rate of Epidermal Terminal Differentiation: Expression of Involucrin by S-Phase Keratinocytes in Culture and in Psoriatic Plaques. Journal of Investigative Dermatology, 1987, 89, 349-352.	0.3	133
349	The extracellular matrix and cell shape. Trends in Biochemical Sciences, 1986, 11, 482-485.	3.7	142
350	Biochemical specificity of Xenopus notochord. Differentiation, 1985, 29, 109-115.	1.0	118
351	Biosynthesis of EGF receptor, transferrin receptor and colligin by cultured human keratinocytes and the effect of retinoic acid. Experimental Cell Research, 1985, 159, 47-54.	1.2	37
352	Involucrin and Other Markers of Keratinocyte Terminal Differentiation. Journal of Investigative Dermatology, 1983, 81, S100-S103.	0.3	245
353	Stratification and terminal differentiation of cultured epidermal cells. Nature, 1982, 295, 434-436.	13.7	304
354	Keratinocyte culture club. Nature, 1982, 300, 688-688.	13.7	0