
## **Richard D Thompson**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1988347/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF               | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 1  | <i>β</i> -Amyrin Synthase1 Controls the Accumulation of the Major Saponins Present in Pea ( <i>Pisum) Tj ETQq1</i>                                                                                                                     | 1,0.78431<br>3.1 | 14 rgBT /Ove |
| 2  | PeaMUST (Pea MultiStress Tolerance), a multidisciplinary French project uniting researchers, plant breeders, and the food industry. , 2021, 3, e108.                                                                                   |                  | 4            |
| 3  | A Cytokinin Signaling Type-B Response Regulator Transcription Factor Acting in Early Nodulation.<br>Plant Physiology, 2020, 183, 1319-1330.                                                                                            | 4.8              | 19           |
| 4  | Structural Variations in LysM Domains of LysM-RLK PsK1 May Result in a Different Effect on<br>Pea–Rhizobial Symbiosis Development. International Journal of Molecular Sciences, 2019, 20, 1624.                                        | 4.1              | 12           |
| 5  | Functional Genomics and Seed Development in Medicago truncatula: An Overview. Methods in<br>Molecular Biology, 2018, 1822, 175-195.                                                                                                    | 0.9              | 2            |
| 6  | Targeting Induced Local Lesions IN Genomes (TILLING) in Medicago truncatula. Methods in Molecular<br>Biology, 2018, 1822, 71-82.                                                                                                       | 0.9              | 2            |
| 7  | Role of a receptor-like kinase K1 in pea Rhizobium symbiosis development. Planta, 2018, 248, 1101-1120.                                                                                                                                | 3.2              | 25           |
| 8  | Genomeâ€wide association studies with proteomics data reveal genes important for synthesis,<br>transport and packaging of globulins in legume seeds. New Phytologist, 2017, 214, 1597-1613.                                            | 7.3              | 38           |
| 9  | Evidence that auxin is required for normal seed size and starch synthesis in pea. New Phytologist, 2017, 216, 193-204.                                                                                                                 | 7.3              | 54           |
| 10 | PUB1 Interacts with the Receptor Kinase DMI2 and Negatively Regulates Rhizobial and Arbuscular<br>Mycorrhizal Symbioses through Its Ubiquitination Activity in <i>Medicago truncatula</i> . Plant<br>Physiology, 2016, 170, 2312-2324. | 4.8              | 49           |
| 11 | DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis. Plant Journal, 2015, 81, 453-466.                                                                         | 5.7              | 31           |
| 12 | The role of the testa during development and in establishment of dormancy of the legume seed.<br>Frontiers in Plant Science, 2014, 5, 351.                                                                                             | 3.6              | 154          |
| 13 | Anatomical bases of sex―and size―elated acoustic variation in herring gull alarm calls. Journal of<br>Avian Biology, 2014, 45, 157-166.                                                                                                | 1.2              | 17           |
| 14 | In vitro auxin treatment promotes cell division and delays endoreduplication in developing seeds of<br>the model legume species <i>Medicago truncatula</i> . Physiologia Plantarum, 2013, 148, 549-559.                                | 5.2              | 16           |
| 15 | The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Science, 2013, 209, 32-45.                                                                                                              | 3.6              | 241          |
| 16 | The seed nuclear proteome. Frontiers in Plant Science, 2012, 3, 289.                                                                                                                                                                   | 3.6              | 9            |
| 17 | Biosynthesis of the Halogenated Auxin, 4-Chloroindole-3-Acetic Acid  Â. Plant Physiology, 2012, 159, 1055-1063.                                                                                                                        | 4.8              | 69           |
| 18 | A role for an endospermâ€localized subtilase in the control of seed size in legumes. New Phytologist,<br>2012, 196, 738-751.                                                                                                           | 7.3              | 44           |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Networks of Seed Storage Protein Regulation in Cereals and Legumes at the Dawn of the Omics Era. , 2012, , 187-210.                                                                                                  |     | 1         |
| 20 | Metabolic Specialization of Maternal and Filial Tissues. , 2012, , 407-432.                                                                                                                                          |     | 0         |
| 21 | Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome<br>suggesting metabolic adaptations to altered sulphate compartmentalization. BMC Plant Biology, 2010,<br>10, 78.       | 3.6 | 37        |
| 22 | The Seed Composition of Arabidopsis Mutants for the Group 3 Sulfate Transporters Indicates a Role in Sulfate Translocation within Developing Seeds. Plant Physiology, 2010, 154, 913-926.                            | 4.8 | 61        |
| 23 | Model legumes contribute to faba bean breeding. Field Crops Research, 2010, 115, 253-269.                                                                                                                            | 5.1 | 64        |
| 24 | Post-Genomics Studies of Developmental Processes in Legume Seeds. Plant Physiology, 2009, 151, 1023-1029.                                                                                                            | 4.8 | 36        |
| 25 | Optimizing TILLING populations for reverse genetics in <i>Medicago truncatula</i> . Plant<br>Biotechnology Journal, 2009, 7, 430-441.                                                                                | 8.3 | 106       |
| 26 | Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Molecular Biology, 2008, 67, 567-580.                                            | 3.9 | 85        |
| 27 | Exploring the nuclear proteome of <i>Medicago truncatula</i> at the switch towards seed filling.<br>Plant Journal, 2008, 56, 398-410.                                                                                | 5.7 | 60        |
| 28 | UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biology, 2008, 9, R43.                                                                                                                  | 9.6 | 157       |
| 29 | Reserve accumulation in legume seeds. Comptes Rendus - Biologies, 2008, 331, 755-762.                                                                                                                                | 0.2 | 72        |
| 30 | Transcriptional Regulation of Storage Protein Synthesis During Dicotyledon Seed Filling. Plant and<br>Cell Physiology, 2008, 49, 1263-1271.                                                                          | 3.1 | 131       |
| 31 | A Combined Proteome and Transcriptome Analysis of Developing Medicago truncatula Seeds.<br>Molecular and Cellular Proteomics, 2007, 6, 2165-2179.                                                                    | 3.8 | 237       |
| 32 | In vitro culture of immature M. truncatula grains under conditions permitting embryo development comparable to that observed in vivo. Plant Science, 2006, 170, 1052-1058.                                           | 3.6 | 32        |
| 33 | Changes in gene expression in maize kernel in response to water and salt stress. Plant Cell Reports, 2006, 25, 71-79.                                                                                                | 5.6 | 69        |
| 34 | Genetic and genomic analysis of legume flowers and seeds. Current Opinion in Plant Biology, 2006, 9, 133-141.                                                                                                        | 7.1 | 35        |
| 35 | In situ expression of two storage protein genes in relation to histo-differentiation at<br>mid-embryogenesis in Medicago truncatula and Pisum sativum seeds. Journal of Experimental Botany,<br>2005, 56, 2019-2028. | 4.8 | 16        |
| 36 | Interaction of maize Opaque-2 and the transcriptional co-activators GCN5 and ADA2, in the modulation of transcriptional activity. Plant Molecular Biology, 2004, 55, 239-252.                                        | 3.9 | 42        |

RICHARD D THOMPSON

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The Tobacco BY-2 Cell Line as a Model System to Understand in Planta Nuclear Coactivator<br>Interactions. Biotechnology in Agriculture and Forestry, 2004, , 316-331.                                                                            | 0.2  | 2         |
| 38 | Alteration of GCN5 levels in maize reveals dynamic responses to manipulating histone acetylation.<br>Plant Journal, 2003, 33, 455-469.                                                                                                           | 5.7  | 42        |
| 39 | Proteomics of Medicago truncatula Seed Development Establishes the Time Frame of Diverse Metabolic<br>Processes Related to Reserve Accumulation. Plant Physiology, 2003, 133, 664-682.                                                           | 4.8  | 241       |
| 40 | Establishment of Cereal Endosperm Expression Domains. Plant Cell, 2002, 14, 599-610.                                                                                                                                                             | 6.6  | 116       |
| 41 | Subcellular localisation of BETL-1, -2 and -4 in Zea mays L. endosperm. Sexual Plant Reproduction, 2002, 15, 85-98.                                                                                                                              | 2.2  | 19        |
| 42 | Post-phloem protein trafficking in the maize caryopsis: zmTRXh1, a thioredoxin specifically expressed<br>in the pedicel parenchyma of Zea mays L., is found predominantly in the placentochalaza. Plant<br>Molecular Biology, 2002, 50, 743-756. | 3.9  | 14        |
| 43 | Development and functions of seed transfer cells. Plant Science, 2001, 160, 775-783.                                                                                                                                                             | 3.6  | 141       |
| 44 | Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue. Plant Journal,<br>2001, 25, 687-698.                                                                                                                          | 5.7  | 82        |
| 45 | rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development+. Plant Journal, 2000, 23, 29-42.                                                                                                    | 5.7  | 68        |
| 46 | Turning fields into grains. Nature, 2000, 408, 39-41.                                                                                                                                                                                            | 27.8 | 6         |
| 47 | Genetic Control of Endosperm Development. , 1999, , 185-197.                                                                                                                                                                                     |      | 4         |
| 48 | Identification of a Promoter Sequence from the BETL1Gene Cluster Able to Confer<br>Transfer-Cell-Specific Expression in Transgenic Maize. Plant Physiology, 1999, 121, 1143-1152.                                                                | 4.8  | 55        |
| 49 | Evidence for factors regulating transfer cell-specific expression in maize endosperm. Plant Molecular<br>Biology, 1999, 41, 403-414.                                                                                                             | 3.9  | 70        |
| 50 | A maize FK506-sensitive immunophilin, mzFKBP-66, is a peptidylproline cis - trans -isomerase that interacts with calmodulin and a 36-kDa cytoplasmic protein. Planta, 1998, 205, 121-131.                                                        | 3.2  | 37        |
| 51 | The activation domain of the maize transcription factor Opaque-2 resides in a single acidic region.<br>Nucleic Acids Research, 1997, 25, 756-763.                                                                                                | 14.5 | 19        |
| 52 | Genetic Regulation of Carbohydrate and Protein Accumulation in Seeds. Advances in Cellular and<br>Molecular Biology of Plants, 1997, , 479-522.                                                                                                  | 0.2  | 11        |
| 53 | Nitrogen and hormonal responsiveness of the 22 kDa alpha-zein and b-32 genes in maize endosperm is<br>displayed in the absence of the transcriptional regulator Opaque-2. Plant Journal, 1997, 12, 281-291.                                      | 5.7  | 29        |
| 54 | Genetic manipulations of protein quality in maize grain. Field Crops Research, 1996, 45, 37-48.                                                                                                                                                  | 5.1  | 7         |

RICHARD D THOMPSON

| #  | Article                                                                                                                                                                                                                    | IF                  | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|
| 55 | The transcriptional activatorOpaque-2 controls the expression of a cytosolic form of pyruvate orthophosphate dikinase-1 in maize endosperms. Molecular Genetics and Genomics, 1996, 250, 647-654.                          | 2.4                 | 54            |
| 56 | Regulation of cytosolic pyruvate, orthophosphate dikinase expression in developing maize endosperm.<br>Plant Molecular Biology, 1996, 31, 45-55.                                                                           | 3.9                 | 32            |
| 57 | The role of multiple binding sites in the activation of zein gene expression by. Molecular Genetics and Genomics, 1996, 252, 723.                                                                                          | 2.4                 | 4             |
| 58 | Molecular analysis of <i>opaque</i> -2 alleles from <i>Zea mays</i> L. reveals the nature of mutational events and the presence of a hypervariable region in the 5′ part of the gene. Genetical Research, 1995, 65, 11-19. | 0.9                 | 20            |
| 59 | Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize Plant<br>Cell, 1995, 7, 747-757.                                                                                             | 6.6                 | 108           |
| 60 | ZEMa, a member of a novel group of MADS box genes, is alternatively spliced in maize endosperm.<br>Nucleic Acids Research, 1995, 23, 2168-2177.                                                                            | 14.5                | 47            |
| 61 | Regulation of Storage Protein Synthesis in Cereal Seeds: Developmental and Nutritional Aspects.<br>Journal of Plant Physiology, 1995, 145, 606-613.                                                                        | 3.5                 | 32            |
| 62 | Structural and functional analysis of an Opaque-2-related gene from sorghum. Plant Molecular<br>Biology, 1994, 24, 515-523.                                                                                                | 3.9                 | 28            |
| 63 | The most abundant soluble basic protein of the stylar transmitting tract in potato (Solanum) Tj ETQq1 1 0.7843                                                                                                             | 14, <u>çg</u> BT /C | verlock 10 Th |
| 64 | Differences in cell type-specific expression of the gene Opaque 2 in maize and transgenic tobacco.<br>Molecular Genetics and Genomics, 1994, 244, 391-400.                                                                 | 2.4                 | 40            |
| 65 | Functional expression of the transcriptional activator Opaque-2 of Zea mays in transformed yeast.<br>Molecular Genetics and Genomics, 1993, 241-241, 319-326.                                                              | 2.4                 | 38            |
| 66 | The accumulation of zein polypeptides and zein mRNA in cultured endosperms of maize is modulated by<br>nitrogen supply. Plant Journal, 1993, 3, 325-334.                                                                   | 5.7                 | 17            |
| 67 | Translation of the mRNA of the Maize Transcriptional Activator Opaque-2 Is Inhibited by Upstream<br>Open Reading Frames Present in the Leader Sequence. Plant Cell, 1993, 5, 65.                                           | 6.6                 | 34            |
| 68 | Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.)<br>indicates quantitative effects on grain quality. Theoretical and Applied Genetics, 1992, 83, 373-378.                  | 3.6                 | 225           |
| 69 | The S locus of flowering plants: when self-rejection is self-interest. Trends in Genetics, 1992, 8, 381-387.                                                                                                               | 6.7                 | 74            |
| 70 | The S locus of flowering plants: when self-rejection is self-interest. Trends in Genetics, 1992, 8, 381-387.                                                                                                               | 6.7                 | 57            |
| 71 | Molecular analysis of theBg-rbg transposable element system ofZea mays L Molecular Genetics and Genomics, 1991, 227, 91-96.                                                                                                | 2.4                 | 23            |
| 72 | Investigation of a self-compatible mutation in Solanum tuberosum clones inhibiting S-allele activity in pollen differentially. Molecular Genetics and Genomics, 1991, 226-226, 283-288.                                    | 2.4                 | 43            |

| #  | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Genetic and Molecular Studies on Endosperm Storage Proteins in Maize. , 1991, , 627-634.                                                                                                                                                                                     |      | Ο         |
| 74 | The b-32 protein from maize endosperm: characterization of genomic sequences encoding two<br>alternative central domains. Plant Molecular Biology, 1990, 14, 1031-1040.                                                                                                      | 3.9  | 34        |
| 75 | The characterization of cDNA clones coding for wheat storage proteins. Nucleic Acids Research, 1983, 11, 2961-2977.                                                                                                                                                          | 14.5 | 147       |
| 76 | A Novel Recombinant of Phage Lambda and a Conserved 3000-Base-Pair Fragment of <i>Xenopus<br/>laevis</i> Ribosomal Deoxyribonucleic Acid Produced by Restriction with Endonucleases <i>Hin</i> d<br>III/ <i>Bam</i> I. Biochemical Society Transactions, 1978, 6, 1232-1233. | 3.4  | 2         |