
Sylvia Christakos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1987543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulatory domains controlling high intestinal vitamin D receptor gene expression are conserved in mouse and human. Journal of Biological Chemistry, 2022, 298, 101616.	3.4	8
2	Genomic analysis of 1,25-dihydroxyvitamin D3 action in mouse intestine reveals compartment and segment-specific gene regulatory effects. Journal of Biological Chemistry, 2022, 298, 102213.	3.4	8
3	Analysis of 1,25-Dihydroxyvitamin D ₃ Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Molecular and Cellular Biology, 2021, 41, .	2.3	18
4	Binding Proteins Calcium-Buffering Proteins: Calbindin. , 2021, , 527-533.		0
5	1,25â€Dihydroxyvitamin D ₃ and dietary vitamin D reduce inflammation in mice lacking intestinal epithelial cell Rab11a. Journal of Cellular Physiology, 2021, 236, 8148-8159.	4.1	6
6	Vitamin <scp>D</scp> : A Critical Regulator of Intestinal Physiology. JBMR Plus, 2021, 5, e10554.	2.7	12
7	Drivers of transcriptional variance in human intestinal epithelial organoids. Physiological Genomics, 2021, 53, 486-508.	2.3	17
8	Vitamin D and the intestine: Review and update. Journal of Steroid Biochemistry and Molecular Biology, 2020, 196, 105501.	2.5	37
9	Vitamin D gene regulation. , 2020, , 739-756.		2
10	New aspects of vitamin D metabolism and action — addressing the skin as source and target. Nature Reviews Endocrinology, 2020, 16, 234-252.	9.6	181
11	New developments in our understanding of vitamin D metabolism, action and treatment. Metabolism: Clinical and Experimental, 2019, 98, 112-120.	3.4	66
12	Vitamin D and Bone. Handbook of Experimental Pharmacology, 2019, 262, 47-63.	1.8	12
13	PU.1 and epigenetic signals modulate 1,25â€dihydroxyvitamin D ₃ and C/EBPα regulation of the human cathelicidin antimicrobial peptide gene in lung epithelial cells. Journal of Cellular Physiology, 2019, 234, 10345-10359.	4.1	8
14	Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinology and Metabolism Clinics of North America, 2017, 46, 815-843.	3.2	185
15	Highlights from the 19 th Workshop on Vitamin D in Boston, March 29–31, 2016. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 1-4.	2.5	1
16	In search of regulatory circuits that control the biological activity of vitamin D. Journal of Biological Chemistry, 2017, 292, 17559-17560.	3.4	10
17	Intestinal Regulation of Calcium: Vitamin D and Bone Physiology. Advances in Experimental Medicine and Biology, 2017, 1033, 3-12.	1.6	34
18	Transgenic Expression of the Vitamin D Receptor Restricted to the lleum, Cecum, and Colon of Vitamin D Receptor Knockout Mice Rescues Vitamin D Receptorâ^'Dependent Rickets. Endocrinology, 2017, 158, 3792-3804.	2.8	25

SYLVIA CHRISTAKOS

#	Article	IF	CITATIONS
19	25-Hydroxyvitamin D3 24-Hydroxylase. Vitamins and Hormones, 2016, 100, 137-150.	1.7	33
20	1,25 (OH)2D3 treatment alters the granulomatous response in M. tuberculosis infected mice. Scientific Reports, 2016, 6, 34469.	3.3	5
21	Vitamin D, calcium homeostasis and aging. Bone Research, 2016, 4, 16041.	11.4	228
22	Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiological Reviews, 2016, 96, 365-408.	28.8	1,253
23	Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D. Nutrients, 2015, 7, 8251-8260.	4.1	220
24	C/EBPα and the Vitamin D Receptor Cooperate in the Regulation of Cathelicidin in Lung Epithelial Cells. Journal of Cellular Physiology, 2015, 230, 464-472.	4.1	25
25	New Insights into Mechanisms Of Vitamin D Action Revealed Through The Study Of Transgenic, Knockout, and Aging Mice. FASEB Journal, 2015, 29, LB185.	0.5	0
26	Vitamin D endocrine system and the intestine. BoneKEy Reports, 2014, 3, 496.	2.7	71
27	Novel Mechanism of Negative Regulation of 1,25-Dihydroxyvitamin D3-induced 25-Hydroxyvitamin D3 24-Hydroxylase (Cyp24a1) Transcription. Journal of Biological Chemistry, 2014, 289, 33958-33970.	3.4	36
28	Vitamin D and health: beyond bone. MD Advisor: A Journal for New Jersey Medical Community, 2014, 7, 28-32.	0.0	0
29	Vitamin D Biology Revealed Through the Study of Knockout and Transgenic Mouse Models. Annual Review of Nutrition, 2013, 33, 71-85.	10.1	30
30	Vitamin D: beyond bone. Annals of the New York Academy of Sciences, 2013, 1287, 45-58.	3.8	249
31	Induction of triggering receptor expressed on myeloid cells (TREM-1) in airway epithelial cells by 1,25(OH) ₂ vitamin D ₃ . Innate Immunity, 2012, 18, 250-257.	2.4	56
32	Vitamin D: Metabolism. Rheumatic Disease Clinics of North America, 2012, 38, 1-11.	1.9	73
33	Recent advances in our understanding of 1,25-dihydroxyvitamin D3 regulation of intestinal calcium absorption. Archives of Biochemistry and Biophysics, 2012, 523, 73-76.	3.0	81
34	Mechanism of action of 1,25-dihydroxyvitamin D3 on intestinal calcium absorption. Reviews in Endocrine and Metabolic Disorders, 2012, 13, 39-44.	5.7	55
35	Minireview: Vitamin D: Is There a Role in Extraskeletal Health?. Endocrinology, 2011, 152, 2930-2936.	2.8	92
36	1,25-Dihydroxyvitamin D ₃ Ameliorates Th17 Autoimmunity via Transcriptional Modulation of Interleukin-17A. Molecular and Cellular Biology, 2011, 31, 3653-3669.	2.3	420

#	Article	IF	CITATIONS
37	Novel regulation of 25â€hydroxyvitamin D ₃ 24â€hydroxylase (24(OH)ase) transcription by glucocorticoids: Cooperative effects of the glucocorticoid receptor, C/EBPî², and the Vitamin D receptor in 24(OH)ase transcription. Journal of Cellular Biochemistry, 2010, 110, 1314-1323.	2.6	71
38	Evidence for a Role of Prolactin in Calcium Homeostasis: Regulation of Intestinal Transient Receptor Potential Vanilloid Type 6, Intestinal Calcium Absorption, and the 25-Hydroxyvitamin D3 1α Hydroxylase Gene by Prolactin. Endocrinology, 2010, 151, 2974-2984.	2.8	77
39	Vitamin D: Metabolism. Endocrinology and Metabolism Clinics of North America, 2010, 39, 243-253.	3.2	328
40	Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 183-187.	2.5	46
41	CCAAT Enhancer-binding Protein α Is a Molecular Target of 1,25-Dihydroxyvitamin D3 in MCF-7 Breast Cancer Cells. Journal of Biological Chemistry, 2009, 284, 3086-3095.	3.4	26
42	Calcitonin, a Regulator of the 25-Hydroxyvitamin D3 1α-Hydroxylase Gene. Journal of Biological Chemistry, 2009, 284, 11059-11069.	3.4	56
43	TRPV6 is not required for 1α,25-dihydroxyvitamin D ₃ -induced intestinal calcium absorption in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19655-19659.	7.1	90
44	Active Intestinal Calcium Transport in the Absence of Transient Receptor Potential Vanilloid Type 6 and Calbindin-D9k. Endocrinology, 2008, 149, 3196-3205.	2.8	204
45	Calbindin D9k is not required for 1,25-dihydroxyvitamin D3-mediated Ca2+ absorption in small intestine. Archives of Biochemistry and Biophysics, 2007, 460, 227-232.	3.0	80
46	New insights into the function and regulation of vitamin D target proteins. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 405-410.	2.5	31
47	Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D3. Journal of Cystic Fibrosis, 2007, 6, 403-410.	0.7	304
48	Vitamin D. Annals of the New York Academy of Sciences, 2007, 1116, 340-348.	3.8	97
49	New Insights into the Mechanisms Involved in the Pleiotropic Actions of 1,25Dihydroxyvitamin D3. Annals of the New York Academy of Sciences, 2006, 1068, 194-203.	3.8	26
50	Calbindin D _{9k} knockout mice are indistinguishable from wild-type mice in phenotype and serum calcium level. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12377-12381.	7.1	83
51	The Vitamin D Receptor, Runx2, and the Notch Signaling Pathway Cooperate in the Transcriptional Regulation of Osteopontin. Journal of Biological Chemistry, 2005, 280, 40589-40598.	3.4	144
52	Functional Cooperation between CCAAT/Enhancer-Binding Proteins and the Vitamin D Receptor in Regulation of 25-Hydroxyvitamin D 3 24-Hydroxylase. Molecular and Cellular Biology, 2005, 25, 472-487.	2.3	96
53	Biological actions and mechanism of action of calbindin in the process of apoptosis. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 401-404.	2.5	54
54	Integration of hormone signaling in the regulation of human 25(OH)D3 24-hydroxylase transcription. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E598-E608.	3.5	39

SYLVIA CHRISTAKOS

#	Article	IF	CITATIONS
55	Calcium Transporter 1 and Epithelial Calcium Channel Messenger Ribonucleic Acid Are Differentially Regulated by 1,25 Dihydroxyvitamin D3 in the Intestine and Kidney of Mice. Endocrinology, 2003, 144, 3885-3894.	2.8	218
56	New insights into the mechanisms of vitamin D action. Journal of Cellular Biochemistry, 2003, 88, 695-705.	2.6	285
57	Evidence for a Regulatory Role of Inducible cAMP Early Repressor in Protein Kinase A-Mediated Enhancement of Vitamin D Receptor Expression and Modulation of Hormone Action. Molecular Endocrinology, 2002, 16, 2052-2064.	3.7	36
58	Acute Hypoxia-Induced Alterations of Calbindin-D _{28k} Immunoreactivity in Cerebellar purkinje Cells of the Guinea pig Fetus at Term. Journal of Neuropathology and Experimental Neurology, 2001, 60, 470-482.	1.7	25
59	YY1 Represses Vitamin D Receptor-Mediated 25-Hydroxyvitamin D3 24-Hydroxylase Transcription: Relief of Repression by CREB-Binding Protein. Molecular Endocrinology, 2001, 15, 1035-1046.	3.7	37
60	Deficient Mineralization of Intramembranous Bone in Vitamin D-24-Hydroxylase-Ablated Mice Is Due to Elevated 1,25-Dihydroxyvitamin D and Not to the Absence of 24,25-Dihydroxyvitamin D*. Endocrinology, 2000, 141, 2658-2666.	2.8	257
61	Genomic mechanisms involved in the pleiotropic actions of 1,25-dihydroxyvitamin D3. Biochemical Journal, 1996, 316, 361-371.	3.7	228
62	Age and gender effects on 1,25-dihydroxyvitamin D3-regulated gene expression. Experimental Gerontology, 1995, 30, 631-643.	2.8	37
63	In vitro enzyme activation with calbindin-D28k, the vitamin D-dependent 28 kDa calcium binding protein. FEBS Letters, 1992, 297, 127-131.	2.8	51
64	Molecular Aspects of the Calbindins. Journal of Nutrition, 1992, 122, 678-682.	2.9	51
65	Cerebellar Purkinje cell markers are expressed in retinal bipolar neurons. Journal of Comparative Neurology, 1991, 308, 630-649.	1.6	93
66	Immunoreactive calcium-binding protein (calbindin-D28k) in interneurons and trigeminothalamic neurons of the rat nucleus caudalis localized with peroxidase and immunogold methods. Synapse, 1991, 7, 106-113.	1.2	19
67	Cellular gene expression for calbidin-D28k in mouse kidney. The Anatomical Record, 1990, 227, 145-151.	1.8	16
68	Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum. Journal of Comparative Neurology, 1990, 297, 77-90.	1.6	127
69	Ultrastructural localization of immunoreactive calbindin-D28k in the rat and monkey basal ganglia, including subcellular distribution with colloidal gold labeling. Journal of Comparative Neurology, 1989, 279, 653-665.	1.6	100
70	Calcium Binding Protein in Squid Brain: Biochemical Similarity to the 28,000-MrVitamin D-Dependent Calcium Binding Protein (Calbindin-D28k). Journal of Neurochemistry, 1987, 49, 1427-1437.	3.9	20
71	Vitamin D-Dependent Rat Renal Calcium-Binding Protein: Development of a Radioimmu no assay, Tissue Distribution, and Immunologic Identification*. Endocrinology, 1984, 115, 640-648.	2.8	83