
Timothy P Durrett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/198738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Suppression of SDP1 Improves Soybean Seed Composition by Increasing Oil and Reducing Undigestible Oligosaccharides. Frontiers in Plant Science, 2022, 13, 863254.	3.6	13
2	Lipidomic Analysis of Arabidopsis T-DNA Insertion Lines Leads to Identification and Characterization of C-Terminal Alterations in FATTY ACID DESATURASE 6. Plant and Cell Physiology, 2022, 63, 1193-1204.	3.1	5
3	Generation of camelina mid-oleic acid seed oil by identification and stacking of fatty acid biosynthetic mutants. Industrial Crops and Products, 2021, 159, 113074.	5.2	2
4	The tail of chlorophyll: Fates for phytol. Journal of Biological Chemistry, 2021, 296, 100802.	3.4	6
5	Generating Pennycress (Thlaspi arvense) Seed Triacylglycerols and Acetyl-Triacylglycerols Containing Medium-Chain Fatty Acids. Frontiers in Energy Research, 2021, 9, .	2.3	8
6	Temporal changes in metabolism late in seed development affect biomass composition. Plant Physiology, 2021, 186, 874-890.	4.8	25
7	Expression of a highâ€activity diacylglycerol acetyltransferase results in enhanced synthesis of acetylâ€TAG in camelina seed oil. Plant Journal, 2021, 106, 953-964.	5.7	6
8	On the Inverse Correlation of Protein and Oil: Examining the Effects of Altered Central Carbon Metabolism on Seed Composition Using Soybean Fast Neutron Mutants. Metabolites, 2020, 10, 18.	2.9	25
9	Pennycress, carbon wise: labeling experiments reveal how pennycress seeds efficiently incorporate carbon into biomass. Journal of Experimental Botany, 2020, 71, 2842-2846.	4.8	7
10	Feasible regeneration and agro bacterium-mediated transformation of Brassica juncea with Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene. Saudi Journal of Biological Sciences, 2020, 27, 1324-1332.	3.8	19
11	Seed yield and oil quality as affected by Camelina cultivar and planting date. Journal of Crop Improvement, 2019, 33, 202-222.	1.7	21
12	The Plastid Lipase PLIP1 Is Critical for Seed Viability in <i>diacylglycerol acyltransferase1</i> Mutant Seed. Plant Physiology, 2019, 180, 1962-1974.	4.8	14
13	Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Progress in Lipid Research, 2019, 75, 100987.	11.6	19
14	Molecular tools enabling pennycress (<i>Thlaspi arvense</i>) as a model plant and oilseed cash cover crop. Plant Biotechnology Journal, 2019, 17, 776-788.	8.3	75
15	Towards the synthetic design of camelina oil enriched in tailored acetyl-triacylglycerols with medium-chain fatty acids. Journal of Experimental Botany, 2018, 69, 4395-4402.	4.8	30
16	A New Class of Acetylâ€TAG Present in Seed Oils of <i>Polygala</i> Species. European Journal of Lipid Science and Technology, 2018, 120, 1800246.	1.5	1
17	Review: Metabolic engineering of unusual lipids in the synthetic biology era. Plant Science, 2017, 263, 126-131.	3.6	18
18	Membrane topology and identification of key residues of <i>Ea</i> DAcT, a plant <scp>MBOAT</scp> with unusual substrate specificity. Plant Journal, 2017, 92, 82-94.	5.7	20

TIMOTHY P DURRETT

#	Article	IF	CITATIONS
19	Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose. Biotechnology for Biofuels, 2017, 10, 69.	6.2	16
20	Camelina Seed Yield and Fatty Acids as Influenced by Genotype and Environment. Agronomy Journal, 2017, 109, 947-956.	1.8	42
21	Rapid Quantification of Lowâ€Viscosity Acetylâ€Triacylglycerols Using Electrospray Ionization Mass Spectrometry. Lipids, 2016, 51, 1093-1102.	1.7	11
22	Defining the extreme substrate specificity of <i>Euonymus alatus</i> diacylglycerol acetyltransferase, an unusual membrane-bound <i>O</i> -acyltransferase. Bioscience Reports, 2016, 36, .	2.4	12
23	The Yeast ATF1 Acetyltransferase Efficiently Acetylates Insect Pheromone Alcohols: Implications for the Biological Production of Moth Pheromones. Lipids, 2016, 51, 469-475.	1.7	24
24	Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie, 2016, 120, 9-16.	2.6	84
25	Oleaginous yeast: a value-added platform for renewable oils. Critical Reviews in Biotechnology, 2016, 36, 942-955.	9.0	85
26	Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value. Plant Biotechnology Journal, 2015, 13, 858-865.	8.3	67
27	Field production, purification and analysis of high-oleic acetyl-triacylglycerols from transgenic Camelina sativa. Industrial Crops and Products, 2015, 65, 259-268.	5.2	46
28	A plant factory for moth pheromone production. Nature Communications, 2014, 5, 3353.	12.8	67
29	Acyl-Lipid Metabolism. The Arabidopsis Book, 2013, 11, e0161.	0.5	974
30	Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnology Journal, 2011, 9, 874-883.	8.3	165
31	Comparative deep transcriptional profiling of four developing oilseeds. Plant Journal, 2011, 68, 1014-1027.	5.7	241
32	A distinct DGAT with <i>sn</i> -3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in <i>Euonymus</i> and transgenic seeds. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9464-9469.	7.1	118
33	Analysis of Acyl Fluxes through Multiple Pathways of Triacylglycerol Synthesis in Developing Soybean Embryos Â. Plant Physiology, 2009, 150, 55-72.	4.8	278
34	Plant triacylglycerols as feedstocks for the production of biofuels. Plant Journal, 2008, 54, 593-607.	5.7	580
35	The FRD3-Mediated Efflux of Citrate into the Root Vasculature Is Necessary for Efficient Iron Translocation. Plant Physiology, 2007, 144, 197-205.	4.8	525
36	ArabidopsiscpFtsYmutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity. Plant Journal, 2006, 47, 467-479.	5.7	23

#	ARTICLE	IF	CITATIONS
37	Characterization of the Arabidopsis TU8 Glucosinolate Mutation,an Allele of TERMINAL FLOWER2. Plant Molecular Biology, 2004, 54, 671-682.	3.9	51
38	Engineering Vitamin E Content: From Arabidopsis Mutant to Soy Oil. Plant Cell, 2003, 15, 3007-3019.	6.6	231