Thomas Haller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1986995/publications.pdf

Version: 2024-02-01

257450 289244 1,727 59 24 40 h-index citations g-index papers 61 61 61 1443 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The impact of nebulized Epoprostenol and Iloprost on hemoglobin oxygen affinity - an ex-vivo experiment. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, , .	2.9	4
2	Stimulation of surfactant exocytosis in primary alveolar type II cells by <i>A. fumigatus</i> . Medical Mycology, 2021, 59, 168-179.	0.7	3
3	Highâ€throughput determination of oxygen dissociation curves in a microplate reader—A novel, quantitative approach. Physiological Reports, 2021, 9, e14995.	1.7	6
4	Dose- and Sex-Dependent Changes in Hemoglobin Oxygen Affinity by the Micronutrient 5-Hydroxymethylfurfural and α-Ketoglutaric Acid. Nutrients, 2021, 13, 3448.	4.1	5
5	Effects of Carbon Dioxide and Temperature on the Oxygen-Hemoglobin Dissociation Curve of Human Blood: Implications for Avalanche Victims. Frontiers in Medicine, 2021, 8, 808025.	2.6	4
6	tBHP treatment as a model for cellular senescence and pollution-induced skin aging. Mechanisms of Ageing and Development, 2020, 190, 111318.	4.6	19
7	Migrating Lung Monocytes Internalize and Inhibit Growth of Aspergillus fumigatus Conidia. Pathogens, 2020, 9, 983.	2.8	4
8	Polarized light microscopy reveals physiological and drug-induced changes in surfactant membrane assembly in alveolar type II pneumocytes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1152-1161.	2.6	20
9	A small key unlocks a heavy door: The essential function of the small hydrophobic proteins SP-B and SP-C to trigger adsorption of pulmonary surfactant lamellar bodies. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2124-2134.	4.1	38
10	LATE-BREAKING ABSTRACT: Interfacial sensing a new regulator of pulmonary epithelial barrier function. , 2016, , .		0
11	Pneumocytes Assemble Lung Surfactant as Highly Packed/Dehydrated States with Optimal Surface Activity. Biophysical Journal, 2015, 109, 2295-2306.	0.5	21
12	A new role for an old drug: Ambroxol triggers lysosomal exocytosis via pH-dependent Ca2+ release from acidic Ca2+ stores. Cell Calcium, 2015, 58, 628-637.	2.4	46
13	Human Decidua-Derived Mesenchymal Stem Cells Differentiate into Functional Alveolar Type II-Like Cells that Synthesize and Secrete Pulmonary Surfactant Complexes. PLoS ONE, 2014, 9, e110195.	2.5	20
14	Physiological variables affecting surface film formation by native lamellar body-like pulmonary surfactant particles. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1842-1850.	2.6	23
15	Nontoxic impact of PEG-coated gold nanospheres on functional pulmonary surfactant-secreting alveolar type II cells. Nanotoxicology, 2014, 8, 813-823.	3.0	23
16	Spatio-temporal aspects, pathways and actions of Ca2+ in surfactant secreting pulmonary alveolar type II pneumocytes. Cell Calcium, 2012, 52, 296-302.	2.4	39
17	Fluorescence and Infrared Spectroscopy for the Study of Structure and Lipid Packing/Hydration in Pulmonary Surfactant Membranes and Lamellar Body -Like Particles. Biophysical Journal, 2012, 102, 647a-648a.	0.5	1
18	Adsorption Mechanism of Pulmonary Surfactant Lamellar Bodies at the Air-Liquid Interface. Biophysical Journal, 2012, 102, 647a.	0.5	0

#	Article	IF	CITATIONS
19	Interfacial stress affects rat alveolar type II cell signaling and gene expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L117-L129.	2.9	18
20	Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells. BMC Pulmonary Medicine, 2011, 11, 11.	2.0	12
21	Fusion-activated Ca ²⁺ entry via vesicular P2X ₄ receptors promotes fusion pore opening and exocytotic content release in pneumocytes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14503-14508.	7.1	78
22	Interfacial sensing by alveolar type II cells: a new concept in lung physiology?. American Journal of Physiology - Cell Physiology, 2011, 300, C1456-C1465.	4.6	26
23	Recent advances in alveolar biology: Some new looks at the alveolar interface. Respiratory Physiology and Neurobiology, 2010, 173, S55-S64.	1.6	48
24	Effects of Perfluorocarbons on surfactant exocytosis and membrane properties in isolated alveolar type II cells. Respiratory Research, 2010, 11, 52.	3.6	8
25	Lamellar Bodies Form Solid Three-dimensional Films at the Respiratory Air-Liquid Interface. Journal of Biological Chemistry, 2010, 285, 28174-28182.	3.4	29
26	Fusion-Activated Ca2+ Entry: An "Active Zone―of Elevated Ca2+ during the Postfusion Stage of Lamellar Body Exocytosis in Rat Type II Pneumocytes. PLoS ONE, 2010, 5, e10982.	2.5	36
27	Existence of exocytotic hemifusion intermediates with a lifetime of up to seconds in typeÂll pneumocytes. Biochemical Journal, 2009, 424, 7-14.	3.7	23
28	High-throughput evaluation of pulmonary surfactant adsorption and surface film formation. Journal of Lipid Research, 2008, 49, 2479-2488.	4.2	26
29	Long-term exposure to LPS enhances the rate of stimulated exocytosis and surfactant secretion in alveolar type II cells and upregulates P2Y ₂ receptor expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L708-L717.	2.9	26
30	A Fluorescent Microplate Assay for Exocytosis in Alveolar Type II Cells. Journal of Biomolecular Screening, 2006, 11, 286-295.	2.6	22
31	Ca ²⁺ Induced Surfactant Secretion in Alveolar Type II Cultures Isolated from the H-2K ^b -tsA58 Transgenic Mouse. Cellular Physiology and Biochemistry, 2005, 15, 159-166.	1.6	10
32	EXOCYTOSIS OF LUNG SURFACTANT: From the Secretory Vesicle to the Air-Liquid Interface. Annual Review of Physiology, 2005, 67, 595-621.	13.1	111
33	Optical Measurement of Surface Tension in a Miniaturized Air-Liquid Interface and its Application in Lung Physiology. Biophysical Journal, 2005, 89, 1353-1361.	0.5	31
34	Ca2+ entry is essential for cell strain-induced lamellar body fusion in isolated rat type II pneumocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L210-L220.	2.9	48
35	Pulmonary Consequences of a Deep Breath Revisited. Neonatology, 2004, 85, 299-304.	2.0	34
36	Inhibition by cytoplasmic nucleotides of a new cation channel in freshly isolated human and rat type II pneumocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L1284-L1292.	2.9	11

3

#	Article	IF	Citations
37	Reduction of intracellular pH inhibits constitutive expression of Cyclooxygenase-2 in human colon cancer cells. Journal of Cellular Physiology, 2004, 198, 295-301.	4.1	9
38	Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers. Biophysical Journal, 2003, 84, 1344-1351.	0.5	43
39	Simvastatin Inhibits Malignant Transformation Following Expression of the <i>Ha-ras</i> Oncogene in NIH 3T3 Fibroblasts. Cellular Physiology and Biochemistry, 2002, 12, 19-30.	1.6	13
40	Signal transduction pathways in directed migration of human monocytes induced by human growth hormone in vitro. International Immunopharmacology, 2001, 1, 1351-1361.	3.8	13
41	Mechanisms of Surfactant Exocytosis in Alveolar Type II Cells In Vitro and In Vivo. Physiology, 2001, 16, 239-243.	3.1	27
42	A SUBPOPULATION OF MITOCHONDRIA PREVENTS CYTOSOLIC CALCIUM OVERLOAD IN ENDOTHELIAL CELLS AFTER COLD ISCHEMIA/REPERFUSION. Transplantation, 2001, 71, 1821-1827.	1.0	20
43	Inhibition of ATP-induced surfactant exocytosis by dihydropyridine (DHP) derivatives: a non-stereospecific, photoactivated effect and independent of L-type Ca2+ channels. Biochemical Pharmacology, 2001, 61, 1161-1167.	4.4	8
44	The conception of fusion pores as rate-limiting structures for surfactant secretion. Comparative Biochemistry and Physiology Part A, Molecular & Entry Integrative Physiology, 2001, 129, 227-231.	1.8	13
45	Fusion pore expansion is a slow, discontinuous, and Ca2+-dependent process regulating secretion from alveolar type II cells. Journal of Cell Biology, 2001, 155, 279-290.	5.2	93
46	Secretion in Alveolar Type II Cells at the Interface of Constitutive and Regulated Exocytosis. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 306-315.	2.9	60
47	PERSISTENT FUSION PORES BUT TRANSIENT FUSION IN ALVEOLAR TYPE II CELLS. Cell Biology International, 2000, 24, 803-807.	3.0	11
48	Threshold calcium levels for lamellar body exocytosis in type II pneumocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L893-L900.	2.9	40
49	Exocytosis in alveolar type II cells revealed by cell capacitance and fluorescence measurements. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L376-L382.	2.9	30
50	Dynamics of surfactant release in alveolar type II cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1579-1584.	7.1	140
51	Effects of bradykinin on NIH 3T3 fibroblasts pretreated with lithium. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1358, 23-30.	4.1	9
52	Calcium Entry Stimulated by Swelling of Madin-Darby Canine Kidney Cells. Nephron, 1996, 74, 150-157.	0.6	10
53	The lysosomal Ca2+ pool in MDCK cells can be released by ins(1,4,5)P3-dependent hormones or thapsigargin but does not activate store-operated Ca2+ entry. Biochemical Journal, 1996, 319, 909-912.	3.7	29
54	Two different storemoperated Ca2+ entry pathways in MDCK cells. Cell Calcium, 1996, 20, 11-19.	2.4	16

THOMAS HALLER

#	Article	IF	CITATIONS
55	The lysosomal compartment as intracellular calcium store in MDCK cells: a possible involvement in InsP3-mediated Ca2+ release. Cell Calcium, 1996, 19, 157-165.	2.4	106
56	A Respirometer for Investigating Oxidative Cell Metabolism: Toward Optimization of Respiratory Studies. Analytical Biochemistry, 1994, 218, 338-342.	2.4	99
57	Effects of taurine on Ca2(+)-dependent force development of skinned muscle fibre preparations. Journal of Experimental Biology, 1990, 152, 255-64.	1.7	40
58	Fractionation and kinetic properties of trehalase from flight muscles and haemolymph of the locust, Locusta migratoria. Insect Biochemistry, 1989, 19, 89-94.	1.8	16
59	Screening for organic acids in fish tissues with special reference to the distribution of taurine inRutilus rutilus L Fish Physiology and Biochemistry, 1987, 3, 145-149.	2.3	8