Jeffrey A Bell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1986511/publications.pdf

Version: 2024-02-01

535685 511568 37 974 17 30 h-index g-index citations papers 39 39 39 1060 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Climate variation influences host specificity in avian malaria parasites. Ecology Letters, 2019, 22, 547-557.	3.0	90
2	Parasite Prevalence Corresponds to Host Life History in a Diverse Assemblage of Afrotropical Birds and Haemosporidian Parasites. PLoS ONE, 2015, 10, e0121254.	1.1	87
3	West Nile Virus Epizootiology, Central Red River Valley, North Dakota and Minnesota, 2002–2005. Emerging Infectious Diseases, 2006, 12, 1245-1247.	2.0	66
4	Host community similarity and geography shape the diversity and distribution of haemosporidian parasites in Amazonian birds. Ecography, 2018, 41, 505-515.	2.1	57
5	West Nile Virus in Host-Seeking Mosquitoes within a Residential Neighborhood in Grand Forks, North Dakota. Vector-Borne and Zoonotic Diseases, 2005, 5, 373-382.	0.6	54
6	Avian host composition, local speciation and dispersal drive the regional assembly of avian malaria parasites in South American birds. Molecular Ecology, 2019, 28, 2681-2693.	2.0	54
7	A new real-time PCR protocol for detection of avian haemosporidians. Parasites and Vectors, 2015, 8, 383.	1.0	52
8	An inverse latitudinal gradient in infection probability and phylogenetic diversity for <i>Leucocytozoon</i> blood parasites in New World birds. Journal of Animal Ecology, 2020, 89, 423-435.	1.3	49
9	Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes. Malaria Journal, 2006, 5, 68.	0.8	48
10	Global drivers of avian haemosporidian infections vary across zoogeographical regions. Global Ecology and Biogeography, 2021, 30, 2393-2406.	2.7	42
11	Diversification by host switching and dispersal shaped the diversity and distribution of avian malaria parasites in Amazonia. Oikos, 2018, 127, 1233-1242.	1.2	41
12	Evolutionary ecology, taxonomy, and systematics of avian malaria and related parasites. Acta Tropica, 2020, 204, 105364.	0.9	39
13	Avian malaria, ecological host traits and mosquito abundance in southeastern Amazonia. Parasitology, 2017, 144, 1117-1132.	0.7	32
14	First Record of <i>Leucocytozoon</i> (Haemosporida: Leucocytozoidae) in Amazonia: Evidence for Rarity in Neotropical Lowlands or Lack of Sampling for This Parasite Genus?. Journal of Parasitology, 2018, 104, 168-172.	0.3	22
15	A New Species of <i>Crepidostomum </i> (Digenea: Allocreadiidae) from <i>Hiodon tergisus </i> in Mississippi and Molecular Comparison with Three Congeners. Journal of Parasitology, 2013, 99, 1114-1121.	0.3	21
16	Host associations and turnover of haemosporidian parasites in manakins (Aves: Pipridae). Parasitology, 2017, 144, 984-993.	0.7	21
17	Molecular phylogeny of Diplostomum, Tylodelphys, Austrodiplostomum and Paralaria (Digenea:) Tj ETQq1 1 0.78 events. International Journal for Parasitology, 2022, 52, 47-63.	84314 rgB1 1.3	T /Overlock 1(21
18	Plumage coloration, body condition and immunological status in Yellow-billed Cardinals (<i>Paroaria capitata</i>). Ethology Ecology and Evolution, 2016, 28, 462-476.	0.6	14

#	Article	IF	CITATIONS
19	Avian Malaria and Related Parasites from Resident and Migratory Birds in the Brazilian Atlantic Forest, with Description of a New Haemoproteus Species. Pathogens, 2021, 10, 103.	1.2	14
20	Unravelling the diversity of the Crassiphialinae (Digenea: Diplostomidae) with molecular phylogeny and descriptions of five new species. Current Research in Parasitology and Vector-borne Diseases, 2021, 1, 100051.	0.7	13
21	First Record of <i>Gyrabascus</i> (Digenea, Pleurogenidae) from <i>Dromiciops bozinovici</i> D'Elia etÂal., 2016 (Marsupialia: Microbiotheriidae) in Chile and its Phylogenetic Relationships. Comparative Parasitology, 2018, 85, 58-65.	0.0	12
22	Passage of Ingested <i> Mansonella ozzardi < /i > (Spirurida: Onchocercidae) Microfilariae Through the Midgut of <i> Aedes aegypti < /i > (Diptera: Culicidae). Journal of Medical Entomology, 2007, 44, 111-116.</i></i>	0.9	11
23	Camallanus Railliet et Henry, 1915 (Nematoda, Camallanidae) from Australian freshwater turtles with descriptions of two new species and molecular differentiation of known taxa. Acta Parasitologica, 2011, 56, .	0.4	11
24	Theoretical Potential of Passerine Filariasis to Enhance the Enzootic Transmission of West Nile Virus. Journal of Medical Entomology, 2012, 49, 1430-1441.	0.9	11
25	Phylogeny and systematics of the Proterodiplostomidae Dubois, 1936 (Digenea: Diplostomoidea) reflect the complex evolutionary history of the ancient digenean group. Systematic Parasitology, 2020, 97, 409-439.	0.5	10
26	Passage of Ingested <i>Mansonella ozzardi</i> (Spirurida: Onchocercidae) Microfilariae Through the Midgut of <i>Aedes aegypti</i> (Diptera: Culicidae). Journal of Medical Entomology, 2007, 44, 111-116.	0.9	9
27	Loss of forest cover and host functional diversity increases prevalence of avian malaria parasites in the Atlantic Forest. International Journal for Parasitology, 2021, 51, 719-728.	1.3	9
28	Bird Tissues from Museum Collections are Reliable for Assessing Avian Haemosporidian Diversity. Journal of Parasitology, 2019, 105, 446.	0.3	9
29	Host movement and time of year influence tick parasitism in Pantanal birds. Experimental and Applied Acarology, 2020, 82, 125-135.	0.7	8
30	Phylogenetic position of <i>Sphincterodiplostomum</i> Dubois, 1936 (Digenea: Diplostomoidea) with description of a second species from Pantanal, Brazil. Journal of Helminthology, 2021, 95, e6.	0.4	8
31	Low host specificity and lack of parasite avoidance by immature ticks in Brazilian birds. Parasitology Research, 2020, 119, 2039-2045.	0.6	5
32	Haemosporidian Parasites of Chilean Ducks: the Importance of Biogeography and Nonpasserine Hosts. Journal of Parasitology, 2020, 106, 211.	0.3	3
33	Host foraging behavior and nest type influence prevalence of avian haemosporidian parasites in the Pantanal. Parasitology Research, 2022, 121, 1407-1417.	0.6	3
34	Host evolutionary history rather than avian functional traits drives the <i>Plasmodium</i> regional assembly in the Atlantic Forest. Functional Ecology, 2022, 36, 1873-1886.	1.7	3
35	Mining increases the prevalence of avian haemosporidian parasites in Northeast Amazonia. Parasitology Research, 2021, 120, 605-613.	0.6	2
36	Avian community composition affects ornithophilic mosquito and avian malaria turnover across an interfluvial system in southern Amazonia. Journal of Avian Biology, 2021, 52, .	0.6	2

#	Article	IF	CITATIONS
37	Bird Tissues from Museum Collections Are Reliable for Assessing Avian Haemosporidian Diversity. Journal of Parasitology, 2019, 105, 446-453.	0.3	1