ArÃ;nzazu SÃ;nchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1986131/publications.pdf

Version: 2024-02-01

		172457	168389
56	3,657	29	53
papers	citations	h-index	g-index
57	57	57	5142
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	BMP9 Promotes an Epithelial Phenotype and a Hepatocyte-like Gene Expression Profile in Adult Hepatic Progenitor Cells. Cells, 2022, 11, 365.	4.1	2
2	Oncological transformation in vitro of hepatic progenitor cell lines isolated from adult mice. Scientific Reports, 2022, 12, 3149.	3.3	7
3	Clathrin switches transforming growth factor- \hat{l}^2 role to pro-tumorigenic in liver cancer. Journal of Hepatology, 2020, 72, 125-134.	3.7	30
4	Inhibition of protein phosphatase 1b protects against lipotoxicity in liver progenitor oval cells. Journal of Hepatology, 2020, 73, S90.	3.7	0
5	C3G Is Upregulated in Hepatocarcinoma, Contributing to Tumor Growth and Progression and to HGF/MET Pathway Activation. Cancers, 2020, 12, 2282.	3.7	6
6	Relevance of epidermal growth factor receptor kinase activity in a model of cholestatic liver injury. Journal of Hepatology, 2020, 73, S202.	3.7	0
7	Editorial Special Issue TGF-Beta/BMP Signaling Pathway. Cells, 2020, 9, 2363.	4.1	2
8	A Signaling Crosstalk between BMP9 and HGF/c-Met Regulates Mouse Adult Liver Progenitor Cell Survival. Cells, 2020, 9, 752.	4.1	10
9	Case Report: An EGFR-Targeted 4-1BB-agonistic Trimerbody Does Not Induce Hepatotoxicity in Transgenic Mice With Liver Expression of Human EGFR. Frontiers in Immunology, 2020, 11, 614363.	4.8	5
10	c-Met Signaling Is Essential for Mouse Adult Liver Progenitor Cells Expansion After Transforming Growth Factor-l²-Induced Epithelial–Mesenchymal Transition and Regulates Cell Phenotypic Switch. Stem Cells, 2019, 37, 1108-1118.	3.2	19
11	Dual role of protein tyrosine phosphatase 1B in the progression and reversion of non-alcoholic steatohepatitis. Molecular Metabolism, 2018, 7, 132-146.	6.5	22
12	BMP Signalling at the Crossroad of Liver Fibrosis and Regeneration. International Journal of Molecular Sciences, 2018, 19, 39.	4.1	48
13	Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in <scp>DDC</scp> â€induced cholestatic liver injury. Liver International, 2018, 38, 1664-1675.	3.9	26
14	BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut, 2017, 66, 939-954.	12.1	107
15	Expression of hepatocellular carcinoma-related genes is increased from the early stages of non-alcoholic fatty liver disease. Surgery for Obesity and Related Diseases, 2016, 12, S205.	1.2	O
16	Tetrahydroisoquinoline-Derived Urea and 2,5-Diketopiperazine Derivatives as Selective Antagonists of the Transient Receptor Potential Melastatin 8 (TRPM8) Channel Receptor and Antiprostate Cancer Agents. Journal of Medicinal Chemistry, 2016, 59, 5661-5683.	6.4	29
17	Dissecting the role of epidermal growth factor receptor catalytic activity during liver regeneration and hepatocarcinogenesis. Hepatology, 2016, 63, 604-619.	7.3	47
18	<scp>TGF</scp> â€Î² signalling and liver disease. FEBS Journal, 2016, 283, 2219-2232.	4.7	457

#	Article	IF	CITATIONS
19	The rationale for targeting <scp>TGF</scp> â€Î² in chronic liver diseases. European Journal of Clinical Investigation, 2016, 46, 349-361.	3.4	60
20	BMP9-Induced Survival Effect in Liver Tumor Cells Requires p38MAPK Activation. International Journal of Molecular Sciences, 2015, 16, 20431-20448.	4.1	22
21	HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial–mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2453-2463.	4.1	36
22	p21 promotes sustained liver regeneration and hepatocarcinogenesis in chronic cholestatic liver injury. Gut, 2014, 63, 1501-1512.	12.1	45
23	The NADPH oxidase NOX4 inhibits hepatocyte proliferation and liver cancer progression. Free Radical Biology and Medicine, 2014, 69, 338-347.	2.9	78
24	Polî½ Deficiency Increases Resistance to Oxidative Damage and Delays Liver Aging. PLoS ONE, 2014, 9, e93074.	2.5	6
25	Met signaling in cardiomyocytes is required for normal cardiac function in adult mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2204-2215.	3.8	29
26	Glucagon Regulation of Oxidative Phosphorylation Requires an Increase in Matrix Adenine Nucleotide Content through Ca2+ Activation of the Mitochondrial ATP-Mg/Pi Carrier SCaMC-3. Journal of Biological Chemistry, 2013, 288, 7791-7802.	3.4	46
27	Mouse Hepatic Oval Cells Require Met-Dependent PI3K to Impair TGF- \hat{I}^2 -Induced Oxidative Stress and Apoptosis. PLoS ONE, 2013, 8, e53108.	2.5	26
28	BMP9 Is a Proliferative and Survival Factor for Human Hepatocellular Carcinoma Cells. PLoS ONE, 2013, 8, e69535.	2.5	67
29	BMPS and Liver: More Questions than Answers. Current Pharmaceutical Design, 2012, 18, 4114-4125.	1.9	17
30	EGFR is dispensable for c-Met-mediated proliferation and survival activities in mouse adult liver oval cells. Cellular Signalling, 2012, 24, 505-513.	3.6	15
31	Growth factor- and cytokine-driven pathways governing liver stemness and differentiation. World Journal of Gastroenterology, 2010, 16, 5148.	3.3	37
32	Genetically modified animal models recapitulating molecular events altered in human hepatocarcinogenesis. Clinical and Translational Oncology, 2009, 11, 208-214.	2.4	7
33	Isolation and characterization of a putative liver progenitor population after treatment of fetal rat hepatocytes with TGFâ€Beta. Journal of Cellular Physiology, 2008, 215, 846-855.	4.1	21
34	Deletion of the Met Tyrosine Kinase in Liver Progenitor Oval Cells Increases Sensitivity to Apoptosis in Vitro. American Journal of Pathology, 2008, 172, 1238-1247.	3.8	30
35	Activation of NADPH oxidase by transforming growth factor- \hat{l}^2 in hepatocytes mediates up-regulation of epidermal growth factor receptor ligands through a nuclear factor- \hat{l}° B-dependent mechanism. Biochemical Journal, 2007, 405, 251-259.	3.7	97
36	Autocrine production of TGF-βÂconfers resistance to apoptosis after an epithelial–mesenchymal transition process in hepatocytes: Role of EGF receptor ligands. Experimental Cell Research, 2006, 312, 2860-2871.	2.6	65

#	Article	IF	CITATIONS
37	Involvement of EGF receptor and c-Src in the survival signals induced by TGF-Î ² 1 in hepatocytes. Oncogene, 2005, 24, 4580-4587.	5.9	135
38	Hepatocyte growth factor/ <i>c-met</i> signaling pathway is required for efficient liver regeneration and repair. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4477-4482.	7.1	679
39	Activation of NF-κB and STAT3 in rat oval cells during 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Hepatology, 2004, 39, 376-385.	7.3	44
40	In vitrodifferentiation of rat liver derived stem cells results in sensitization to TNFα-mediated apoptosis. Hepatology, 2004, 40, 590-599.	7.3	20
41	Transforming growth factor-beta activates both pro-apoptotic and survival signals in fetal rat hepatocytes. Experimental Cell Research, 2004, 292, 209-218.	2.6	61
42	E2F1 blocks and c-Myc accelerates hepatic ploidy in transgenic mouse models. Biochemical and Biophysical Research Communications, 2003, 302, 114-120.	2.1	53
43	STAT-3 activity in chemically-induced hepatocellular carcinoma. European Journal of Cancer, 2003, 39, 2093-2098.	2.8	34
44	Reconstitution of liver mass via cellular hypertrophy in the rat. Hepatology, 2001, 33, 339-345.	7.3	67
45	Reactive oxygen species (ROS) mediates the mitochondrialâ€dependent apoptosis induced by transforming growth factor ß in fetal hepatocytes. FASEB Journal, 2001, 15, 741-751.	0.5	288
46	Epidermal Growth Factor Impairs the Cytochrome C/Caspase-3 Apoptotic Pathway Induced by Transforming Growth Factorl² in Rat Fetal Hepatocytes Via a Phosphoinositide 3-Kinase–Dependent Pathway. Hepatology, 2000, 32, 528-535.	7.3	76
47	Fibronectin regulates morphology, cell organization and gene expression of rat fetal hepatocytes in primary culture. Journal of Hepatology, 2000, 32, 242-250.	3.7	52
48	Effects of growth and differentiation factors on the epithelial-mesenchymal transition in cultured neonatal rat hepatocytes. Journal of Hepatology, 1999, 31, 895-904.	3.7	45
49	Apoptotic Response to TGF-\$beta; in Fetal Hepatocytes Depends upon Their State of Differentiation. Experimental Cell Research, 1999, 252, 281-291.	2.6	44
50	Phorbol esters down-regulate alpha-fetoprotein gene expression without affecting growth in fetal hepatocytes in primary culture. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1402, 151-164.	4.1	10
51	Transforming Growth Factor-β (TGF-β) and EGF Promote Cord-like Structures That Indicate Terminal Differentiation of Fetal Hepatocytes in Primary Culture. Experimental Cell Research, 1998, 242, 27-37.	2.6	22
52	Cycloheximide prevents apoptosis, reactive oxygen species production, and glutathione depletion induced by transforming growth factor? in fetal rat hepatocytes in primary culture. Hepatology, 1997, 26, 935-943.	7.3	100
53	Epidermal growth factor, but not hepatocyte growth factor, suppresses the apoptosis induced by transforming growth factor-beta in fetal hepatocytes in primary culture. FEBS Letters, 1996, 384, 14-18.	2.8	68
54	Apoptosis Induced by Transforming Growth Factor- \hat{l}^2 in Fetal Hepatocyte Primary Cultures. Journal of Biological Chemistry, 1996, 271, 7416-7422.	3.4	248

ARÃiNZAZU SÃiNCHEZ

#	Article	IF	CITATIONS
55	Transforming growth factor ? modulates growth and differentiation of fetal hepatocytes in primary culture. Journal of Cellular Physiology, 1995, 165, 398-405.	4.1	62
56	Hepatocyte Growth Factor Up-Regulates MET Expression in Rat Fetal Hepatocytes in Primary Culture. Biochemical and Biophysical Research Communications, 1994, 204, 1364-1370.	2.1	28