William G Johnson, W G Johnson, W Joh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1985887/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Herbicide Resistance: Toward an Understanding of Resistance Development and the Impact of Herbicide-Resistant Crops. Weed Science, 2012, 60, 2-30.	0.8	215
2	Comparative growth of six Amaranthus species in Missouri. Weed Science, 2003, 51, 329-333.	0.8	154
3	Evolution of Resistance to Auxinic Herbicides: Historical Perspectives, Mechanisms of Resistance, and Implications for Broadleaf Weed Management in Agronomic Crops. Weed Science, 2011, 59, 445-457.	0.8	127
4	Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. European Journal of Agronomy, 2009, 31, 162-172.	1.9	121
5	Survey of Tillage Trends Following the Adoption of Glyphosate-Resistant Crops. Weed Technology, 2009, 23, 150-155.	0.4	109
6	Farmer Perceptions of Problematic Corn and Soybean Weeds in Indiana1. Weed Technology, 2005, 19, 1065-1070.	0.4	100
7	Efficacy and Economics of Weed Management in Glyphosate-Resistant Corn (Zea mays)1. Weed Technology, 2000, 14, 57-65.	0.4	97
8	A Grower Survey of Herbicide Use Patterns in Glyphosate-Resistant Cropping Systems. Weed Technology, 2009, 23, 156-161.	0.4	80
9	U.S. Grower Views on Problematic Weeds and Changes in Weed Pressure in Glyphosate-Resistant Corn, Cotton, and Soybean Cropping Systems. Weed Technology, 2009, 23, 162-166.	0.4	76
10	Crossâ€resistance of horseweed (<i>Conyza canadensis</i>) populations with three different ALS mutations. Pest Management Science, 2011, 67, 1486-1492.	1.7	62
11	Glyphosate-Resistant Weeds and Resistance Management Strategies: An Indiana Grower Perspective. Weed Technology, 2006, 20, 768-772.	0.4	61
12	Broadleaf Weed Control with Sulfentrazone and Flumioxazin in No-Tillage Soybean (<i>Glycine) Tj ETQq0 0 0 rgB</i>	T /Overloc 0.4	k 10 Tf 50 30
13	Control of Horseweed (<i>Conyza canadensis</i>) with Growth Regulator Herbicides. Weed Technology, 2010, 24, 425-429.	0.4	57
14	Glyphosate resistance in <i>Ambrosia trifida:</i> Part 2. Rapid response physiology and nonâ€ŧargetâ€site resistance. Pest Management Science, 2018, 74, 1079-1088.	1.7	57
15	Effect of Postemergence Glyphosate Application Timing on Weed Control and Grain Yield in Glyphosate-Resistant Corn: Results of a 2-Yr Multistate Study1. Weed Technology, 2003, 17, 821-828.	0.4	53
16	Certified Crop Advisors' Perceptions of Giant Ragweed (<i>Ambrosia trifida</i>) Distribution, Herbicide Resistance, and Management in the Corn Belt. Weed Science, 2016, 64, 361-377.	0.8	53
17	Growth and Seed Production of Horseweed (<i>Conyza canadensis</i>) Populations Resistant to Glyphosate, ALS-Inhibiting, and Multiple (Glyphosate + ALS-Inhibiting) Herbicides. Weed Science, 2009, 57, 494-504.	0.8	52

18Glyphosate-resistant Horseweed (Conyza Canadensis) Emergence, Survival, and Fecundity in No-till0.85018Soybean. Weed Science, 2008, 56, 231-236.50

#	Article	IF	CITATIONS
19	Response of Glyphosate-Tolerant Soybean Yield Components to Dicamba Exposure. Weed Science, 2013, 61, 526-536.	0.8	50
20	Glyphosate resistance in <i>Ambrosia trifida</i> : Part 1. Novel rapid cell death response to glyphosate. Pest Management Science, 2018, 74, 1071-1078.	1.7	50
21	Comparison of Weed Management Systems in Narrow-Row, Glyphosate- and Glufosinate-Resistant Soybean (Clycine max)1. Weed Technology, 2001, 15, 122-128.	0.4	49
22	Using a Grower Survey to Assess the Benefits and Challenges of Glyphosate-Resistant Cropping Systems for Weed Management in U.S. Corn, Cotton, and Soybean. Weed Technology, 2009, 23, 134-149.	0.4	49
23	U.S. Farmer Awareness of Glyphosate-Resistant Weeds and Resistance Management Strategies. Weed Technology, 2009, 23, 308-312.	0.4	49
24	Influence of Weed Management Practices and Crop Rotation on Glyphosate-Resistant Horseweed (Conyza canadensis) Population Dynamics and Crop Yield-Years III and IV. Weed Science, 2009, 57, 417-426.	0.8	49
25	A Field Survey to Determine Distribution and Frequency of Glyphosate-Resistant Horseweed (Conyza) Tj ETQq1 1	0.784314 0.4	rgBT /Overl
26	Summer Annual Weed Control with 2,4-D and Glyphosate. Weed Technology, 2012, 26, 657-660.	0.4	48
27	Herbicide Program Approaches for Managing Glyphosate-Resistant Palmer Amaranth (<i>Amaranthus) Tj ETQq1 1 Soybean-Trait Technologies. Weed Technology, 2015, 29, 716-729.</i>	0.784314 0.4	ł rgBT /Over 45
28	The impact of a fungicide and an insecticide on soybean growth, yield, and profitability. Crop Protection, 2011, 30, 1629-1634.	1.0	44
29	Influence of Weed Management Practices and Crop Rotation on Glyphosate-Resistant Horseweed Population Dynamics and Crop Yield. Weed Science, 2007, 55, 508-516.	0.8	42
30	The Effect of Cations and Ammonium Sulfate on the Efficacy of Dicamba and 2,4-D. Weed Technology, 2013, 27, 72-77.	0.4	42
31	Competition of Transgenic Volunteer Corn with Soybean and the Effect on Western Corn Rootworm Emergence. Weed Science, 2012, 60, 193-198.	0.8	41
32	Weed Management with Reduced Rates of Glyphosate in No-Till, Narrow-Row, Glyphosate-Resistant Soybean (Glycine max). Weed Technology, 1999, 13, 478-483.	0.4	40
33	Influence of formulation and glyphosate salt on absorption and translocation in three annual weeds. Weed Science, 2005, 53, 153-159.	0.8	39
34	Benchmark study on glyphosateâ€resistant cropping systems in the United States. Part 4: Weed management practices and effects on weed populations and soil seedbanks. Pest Management Science, 2011, 67, 771-780.	1.7	39
35	Nicosulfuron, Primisulfuron, Imazethapyr, and DPX-PE350 Injury to Succeeding Crops. Weed Technology, 1993, 7, 641-644.	0.4	38
36	Influence of Glyphosate or Glufosinate Combinations with Growth Regulator Herbicides and Other Agrochemicals in Controlling Glyphosate-Resistant Weeds. Weed Technology, 2012, 26, 638-643.	0.4	38

#	Article	IF	CITATIONS
37	Economics of Weed Management in Glufosinate-Resistant Corn (Zea maysL.)1. Weed Technology, 2000, 14, 495-501.	0.4	36
38	Fate of Glyphosate-Resistant Giant Ragweed (<i>Ambrosia trifida</i>) in the Presence and Absence of Glyphosate. Weed Science, 2011, 59, 506-511.	0.8	35
39	Weed Management Programs in Glufosinate-Resistant Soybean (Glycine max)1. Weed Technology, 2002, 16, 267-273.	0.4	34
40	Characterization of Selected Common Lambsquarters (<i>Chenopodium album</i>) Biotypes with Tolerance to Glyphosate. Weed Science, 2008, 56, 685-691.	0.8	34
41	Dose Response of Glyphosate and Dicamba on Tomato (<i>Lycopersicon esculentum</i>) Injury. Weed Technology, 2012, 26, 256-260.	0.4	34
42	Late-Emerging Common Waterhemp (Amaranthus rudis) Interference in Conventional Tillage Corn. Weed Technology, 2004, 18, 999-1005.	0.4	33
43	Fall and Spring Preplant Herbicide Applications Influence Spring Emergence of Glyphosate-Resistant Horseweed (<i>Conyza canadensis</i>). Weed Technology, 2010, 24, 11-19.	0.4	32
44	Weed Control and Economic Returns with Postemergence Herbicides in Narrow-Row Soybeans (<i>Glycine max</i>). Weed Technology, 1997, 11, 453-459.	0.4	29
45	Influence of Shattercane [Sorghum bicolor (L.) Moench.] Interference on Corn (Zea mays L.) Yield and Nitrogen Accumulation1. Weed Technology, 2002, 16, 787-791.	0.4	29
46	Farmer Perceptions of Weed Problems in Corn and Soybean Rotation Systems. Weed Technology, 2006, 20, 751-755.	0.4	29
47	Glufosinate Efficacy as Influenced by Carrier Water pH, Hardness, Foliar Fertilizer, and Ammonium Sulfate. Weed Technology, 2016, 30, 848-859.	0.4	29
48	Volunteer Corn Presents New Challenges for Insect Resistance Management. Agronomy Journal, 2009, 101, 797-799.	0.9	27
49	Field Presence of Glyphosate-Resistant Horseweed (Conyza Canadensis), Common Lambsquarters (Chenopodium Album), and Giant Ragweed (Ambrosia Trifida) Biotypes with Elevated Tolerance to Glyphosate. Weed Technology, 2008, 22, 544-548.	0.4	25
50	Response and Survival of Rosette-Stage Horseweed (<i>Conyza canadensis</i>) after Exposure to 2,4-D. Weed Science, 2008, 56, 748-752.	0.8	25
51	Survey of Broadleaf Winter Weeds in Indiana Production Fields Infested with Soybean Cyst Nematode (Heterodera Glycines). Weed Technology, 2006, 20, 1066-1075.	0.4	24
52	Response of Soybean Yield Components to 2,4-D. Weed Science, 2013, 61, 68-76.	0.8	24
53	Seedbank Persistence of Palmer Amaranth (<i>Amaranthus palmeri</i>) and Waterhemp (<i>Amaranthus tuberculatus</i>) across Diverse Geographical Regions in the United States. Weed Science, 2018, 66, 446-456.	0.8	24
54	Volunteer Corn in Northern Indiana Soybean Correlates to Glyphosate-Resistant Corn Adoption. Crop Management, 2008, 7, 1-2.	0.3	23

#	Article	IF	CITATIONS
55	Efficacy of Various Corn Herbicides Applied Preplant Incorporated and Preemergence. Weed Technology, 2012, 26, 220-229.	0.4	23
56	Johnsongrass Control, Total Nonstructural Carbohydrates in Rhizomes, and Regrowth After Application of Herbicides Used in Herbicide-Resistant Corn (Zea mays)1. Weed Technology, 2003, 17, 36-41.	0.4	22
57	Response of Corn to Simulated Glyphosate Drift Followed by In-Crop Herbicides. Weed Technology, 2009, 23, 11-16.	0.4	22
58	Management of pain in chronic pancreatitis with emphasis on exogenous pancreatic enzymes. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2016, 7, 370.	0.6	22
59	Influence of Winter Annual Weed Management and Crop Rotation on Soybean Cyst Nematode (Heterodera Glycines) and Winter Annual Weeds. Weed Science, 2008, 56, 103-111.	0.8	21
60	Herbicide coverage in narrow row soybean as influenced by spray nozzle design and carrier volume. Crop Protection, 2016, 83, 1-8.	1.0	21
61	Phenology of Five Palmer amaranth (Amaranthus palmeri) Populations Grown in Northern Indiana and Arkansas. Weed Science, 2018, 66, 457-469.	0.8	21
62	Weed Control with Halauxifen-Methyl Applied Alone and in Mixtures with 2,4-D, Dicamba, and Glyphosate. Weed Technology, 2018, 32, 597-602.	0.4	21
63	Use of preplant sulfentrazone in no-till, narrow-row, glyphosate-resistantGlycine max. Weed Science, 2000, 48, 628-639.	0.8	20
64	Frequency, Distribution, and Characterization of Horseweed (<i>Conyza canadensis</i>) Biotypes with Resistance to Glyphosate and ALS-Inhibiting Herbicides. Weed Science, 2009, 57, 652-659.	0.8	20
65	Impact of fluopyram fungicide and preemergence herbicides on soybean injury, population, sudden death syndrome, and yield. Crop Protection, 2018, 106, 103-109.	1.0	20
66	Development of Soybean Cyst Nematode on Henbit (<i>Lamium amplexicaule</i>) and Purple Deadnettle (<i>Lamium purpureum</i>). Weed Technology, 2007, 21, 1064-1070.	0.4	19
67	Growth and Seed Production of Horseweed (<i>Conyza canadensis</i>) Populations after Exposure to Postemergence 2,4-D. Weed Science, 2010, 58, 413-419.	0.8	19
68	Response of Giant Ragweed (<i>Ambrosia trifida</i>), Horseweed (<i>Conyza canadensis</i>), and Common Lambsquarters (<i>Chenopodium album</i>) Biotypes to Glyphosate in the Presence and Absence of Soil Microorganisms. Weed Science, 2012, 60, 641-649.	0.8	19
69	First Report of Soybean Cyst Nematode Reproduction on Purple Deadnettle under Field Conditions. Crop Management, 2005, 4, 1-2.	0.3	19
70	Influence of Nitrogen Application Timing on Low Density Giant Ragweed (Ambrosia Trifida) Interference in Corn. Weed Technology, 2007, 21, 763-767.	0.4	18
71	Influence of Clethodim Application Timing on Control of Volunteer Corn in Soybean. Weed Technology, 2013, 27, 645-648.	0.4	18
72	Cabergoline in the Treatment of Male Orgasmic Disorder—A Retrospective Pilot Analysis. Sexual Medicine, 2016, 4, e28-e33.	0.9	18

#	Article	IF	CITATIONS
73	Effect of Residual Herbicide and Postemergence Application Timing on Weed Control and Yield in Glyphosate-Resistant Corn. Weed Technology, 2011, 25, 19-24.	0.4	17
74	Rhizosphere Microbial Community Dynamics in Glyphosate-Treated Susceptible and Resistant Biotypes of Giant Ragweed (<i>Ambrosia trifida</i>). Weed Science, 2014, 62, 370-381.	0.8	17
75	Annual Ryegrass (<i>Lolium multiflorum</i>), Johnsongrass (<i>Sorghum halepense</i>), and Large Crabgrass (<i>Digitaria sanguinalis</i>) are Alternative Hosts for <i>Clavibacter michiganensis</i> subsp. <i>nebraskensis</i> , Causal Agent of Goss's Wilt of Corn. Weed Science, 2015, 63. 901-909.	0.8	17
76	The Growth and Development of Five Waterhemp (<i>Amaranthus tuberculatus</i>) Populations in a Common Garden. Weed Science, 2017, 65, 247-255.	0.8	17
77	Influence of Cover Crops on Management of Amaranthus Species in Glyphosate- and Glufosinate-Resistant Soybean. Weed Technology, 2017, 31, 487-495.	0.4	17
78	ALS-resistantHelianthus annuusinterference inGlycine max. Weed Science, 2000, 48, 461-466.	0.8	16
79	Competitive Effects of Volunteer Corn on Hybrid Corn Growth and Yield. Weed Science, 2012, 60, 537-541.	0.8	16
80	The Influence of Carrier Water pH and Hardness on Saflufenacil Efficacy and Solubility. Weed Technology, 2013, 27, 527-533.	0.4	16
81	Herbicide Programs Utilizing Halauxifen-Methyl for Glyphosate-Resistant Horseweed (Conyza) Tj ETQq1 1 0.7843	14 rgBT /(0.4	Dverlock 10
82	Weed Control with Reduced Rates of Chlorimuron Plus Metribuzin and Imazethapyr in No-Till Narrow-Row Soybean (<i>Clycine max</i>). Weed Technology, 1998, 12, 32-36.	0.4	15
83	Weed control with reduced rates of imazaquin and imazethapyr in no-till narrow-row soybean (Glycine max). Weed Science, 1998, 46, 105-110.	0.8	15
84	Grass weed interference and nitrogen accumulation in no-tillage corn. Weed Science, 2002, 50, 757-762.	0.8	15
85	Influence of Winter Annual Weed Management and Crop Rotation on Soybean Cyst Nematode (<i>Heterodera glycines</i>) and Winter Annual Weeds: Years Four and Five. Weed Science, 2012, 60, 634-640.	0.8	15
86	Influence of Carrier Water pH, Hardness, Foliar Fertilizer, and Ammonium Sulfate on Mesotrione Efficacy. Weed Technology, 2016, 30, 617-628.	0.4	15
87	Influence of Tillage Method on Management of <i>Amaranthus</i> Species in Soybean. Weed Technology, 2017, 31, 10-20.	0.4	15
88	Reduced rates of sulfentrazone plus chlorimuron and glyphosate in no-till, narrow-row, glyphosate-resistantGlycine max. Weed Science, 2000, 48, 618-627.	0.8	14
89	Early-Season Palmer Amaranth and Waterhemp Control from Preemergence Programs Utilizing 4-Hydroxyphenylpyruvate Dioxygenase–Inhibiting and Auxinic Herbicides in Soybean. Weed Technology, 2016, 30, 67-75.	0.4	14

 $_{90}$ Application Timing Affects Weed Control with Metolachlor Plus Atrazine in No-Till Corn (<i>Zea) Tj ETQq0 0 0 rgBT $_{0.4}^{loverlock}$ 10 Tf 50 6

#	Article	IF	CITATIONS
91	Does Weed Size Matter? An Indiana Grower Perspective about Weed Control Timing. Weed Technology, 2007, 21, 542-546.	0.4	13
92	Carryover of DPX-PE350 to Grain Sorghum (Sorghum bicolor) and Soybean (Glycine max) on Two Arkansas Soils. Weed Technology, 1993, 7, 645-649.	0.4	12
93	Winter-Annual Weed Management in Corn (Zea mays) and Soybean (Glycine max) and the Impact on Soybean Cyst Nematode (Heterodera glycines) Egg Population Densities. Weed Technology, 2006, 20, 965-970.	0.4	12
94	In-Field and Soil-Related Factors that Affect the Presence and Prediction of Glyphosate-Resistant Horseweed (Conyza canadensis) Populations Collected from Indiana Soybean Fields. Weed Science, 2009, 57, 281-289.	0.8	12
95	Elevated Dihydrotestosterone is Associated with Testosterone Induced Erythrocytosis. Journal of Urology, 2015, 194, 160-165.	0.2	12
96	Efficacy of Halauxifen-Methyl on Glyphosate-Resistant Horseweed (<i>Erigeron canadensis</i>). Weed Science, 2018, 66, 758-763.	0.8	12
97	Influence of carrier water pH, foliar fertilizer, and ammonium sulfate on 2,4-D and 2,4-D plus glyphosate efficacy. Weed Technology, 2019, 33, 562-568.	0.4	12
98	Zone herbicide application controls annual weeds and reduces residual herbicide use in corn. Weed Science, 2004, 52, 821-833.	0.8	11
99	Role of Winter Annual Weeds as Alternative Hosts for Soybean Cyst Nematode. Crop Management, 2008, 7, 1-9.	0.3	11
100	Heritability of Glyphosate Resistance in Indiana Horseweed (<i>Conyza canadensis</i>) Populations. Weed Science, 2010, 58, 30-38.	0.8	11
101	Distribution of Herbicide-Resistant Giant Ragweed (<i>Ambrosia trifida</i>) in Indiana and Characterization of Distinct Glyphosate-Resistant Biotypes. Weed Science, 2017, 65, 699-709.	0.8	11
102	Reduced Translocation Is Associated with Tolerance of Common Lambsquarters (<i>Chenopodium) Tj ETQq0 0</i>	0 rgBT /Ov	verlock 10 Tf 5
103	Divalent Cations in Spray Water Influence 2,4-D Efficacy on Dandelion (<i>Taraxacum officinale</i>) and Broadleaf Plantain (<i>Plantago major</i>). Weed Technology, 2016, 30, 431-440.	0.4	10
104	Influence of Spray-Solution Temperature and Holding Duration on Weed Control with Premixed Glyphosate and Dicamba Formulation. Weed Technology, 2016, 30, 116-122.	0.4	10
105	Influence of Early-Season Yield Loss Predictions from WeedSOFT®and Soybean Row Spacing on Weed Seed Production from a Mixed-Weed Community. Weed Technology, 2004, 18, 412-418.	0.4	9
106	Influence of Intraspecific Henbit (Lamium amplexicaule) and Purple Deadnettle (Lamium purpureum) Competition on Soybean Cyst Nematode Reproduction. Weed Science, 2007, 55, 665-670.	0.8	9
107	WeedSOFT: Effects of Corn-Row Spacing for Predicting Herbicide Efficacy on Selected Weed Species. Weed Technology, 2007, 21, 219-224.	0.4	9
108	Response of Four Summer Annual Weed Species to Mowing Frequency and Height. Weed Technology, 2013, 27, 798-802.	0.4	9

#	Article	IF	CITATIONS
109	Response of Aryloxyalkanoate Dioxygenase-12 Transformed Soybean Yield Components to Postemergence 2,4-D. Weed Science, 2015, 63, 242-247.	0.8	9
110	Variable Tolerance among Palmer Amaranth (Amaranthus palmeri) Biotypes to Glyphosate, 2,4-D Amine, and Premix Formulation of Glyphosate plus 2,4-D Choline (Enlist Duo®) Herbicide. Weed Science, 2017, 65, 787-797.	0.8	9
111	Glyphosate plus 2,4-D Deposition, Absorption, and Efficacy on Glyphosate-Resistant Weed Species as Influenced by Broadcast Spray Nozzle. Weed Technology, 2018, 32, 141-149.	0.4	9
112	Assessment of Weed Control Strategies for Corn in the North-Central United States. Weed Technology, 2004, 18, 203-210.	0.4	8
113	Purple Deadnettle (Lamium purpureum) and Soybean Cyst Nematode Response to Cold Temperature Regimes. Weed Science, 2007, 55, 592-598.	0.8	8
114	Soil Microbial Root Colonization of Glyphosate-Treated Giant Ragweed (Ambrosia trifida), Horseweed (Conyza canadensis), and Common Lambsquarters (Chenopodium album) Biotypes. Weed Science, 2013, 61, 289-295.	0.8	8
115	The Impact of Volunteer Corn on Crop Yields and Insect Resistance Management Strategies. Agronomy, 2013, 3, 488-496.	1.3	8
116	Confirmation of herbicide resistance mutations Trp574Leu, ΔG210, and EPSPS gene amplification and control of multiple herbicide-resistant Palmer amaranth (Amaranthus palmeri) with chlorimuron-ethyl, fomesafen, and glyphosate. PLoS ONE, 2019, 14, e0214458.	1.1	8
117	Efficacy of dicamba and glyphosate as influenced by carrier water pH and hardness. Weed Technology, 2020, 34, 101-106.	0.4	8
118	Weed Management and Economic Returns in No-Tillage Herbicide-Resistant Corn (Zea mays)1. Weed Technology, 2003, 17, 239-248.	0.4	7
119	Management of Glyphosate-Tolerant Common Lambsquarters (Chenopodium album) in Glyphosate-Resistant Soybean. Weed Technology, 2008, 22, 628-634.	0.4	7
120	Crop–weed hybrids are more frequent for the grain amaranth â€~Plainsman' than for â€~D136-1'. Genet Resources and Crop Evolution, 2013, 60, 2201-2205.	ic 0.8	7
121	Effect of Carrier Water Hardness and Ammonium Sulfate on Efficacy of 2,4-D Choline and Premixed 2,4-D Choline Plus Glyphosate. Weed Technology, 2016, 30, 878-887.	0.4	7
122	Economics of Johnsongrass (<i>Sorghum halepense</i>) Control in Soybeans (<i>Glycine max</i>). Weed Technology, 1991, 5, 765-770.	0.4	6
123	Evaluation of Corn (Zea mays L.) Yield-loss Estimations by WeedSOFT® in the North Central Region1. Weed Technology, 2005, 19, 1056-1064.	0.4	6
124	Survey of Indiana Producers and Crop Advisors: A Perspective on Winter Annual Weeds and Soybean Cyst Nematode (Heterodera Glycines). Weed Technology, 2007, 21, 532-536.	0.4	6
125	Prevalence And Influence Of Stalk-boring Insects On Glyphosate Activity On Indiana And Michigan Giant Ragweed (Ambrosia Trifida). Weed Technology, 2007, 21, 526-531.	0.4	6
126	Effect of Plant Nitrogen Concentration on the Response of Glyphosate-Resistant Corn Hybrids and Their Progeny to Clethodim and Glufosinate. Weed Science, 2012, 60, 121-125.	0.8	6

#	Article	IF	CITATIONS
127	The Influence of Nitrogen Application Timing and Rate on Volunteer Corn Interference in Hybrid Corn. Weed Science, 2012, 60, 510-515.	0.8	6
128	Timing of Soil-Residual Herbicide Applications for Control of Giant Ragweed (<i>Ambrosia trifida</i>). Weed Technology, 2015, 29, 771-781.	0.4	6
129	Influence of Broadcast Spray Nozzle on the Deposition, Absorption, and Efficacy of Dicamba plus Glyphosate on Four Glyphosate-Resistant Dicot Weed Species. Weed Technology, 2018, 32, 174-181.	0.4	6
130	Glyphosate's Effect Upon Mineral Accumulation in Soybean. Crop Management, 2011, 10, 1-8.	0.3	5
131	The effect of nitrogen rate on transgenic corn <scp>Cry3Bb1</scp> protein expression. Pest Management Science, 2014, 70, 763-770.	1.7	5
132	Efficacy of Ignite and Flexstar Tank Mixtures on Giant Ragweed and Common Lambsquarters. Crop Management, 2010, 9, 1-5.	0.3	5
133	Influence of Stem-boring Insects on Common Lambsquarters (Chenopodium album) Control in Soybean with Clyphosate. Weed Technology, 2007, 21, 241-248.	0.4	4
134	Control of waterhemp (Amaranthus tuberculatus) regrowth after failed applications of glufosinate or fomesafen. Weed Technology, 2020, 34, 794-800.	0.4	4
135	Weed Removal Timings in No-Till, Double-Crop, Glyphosate-Resistant Soybean Grown on Claypan Soils. Crop Management, 2003, 2, 1-6.	0.3	4
136	Assessing The Impact of Educating Growers About Proper Use of Atrazine in Pesticide Applicator Recertification Programs. Weed Technology, 2008, 22, 326-330.	0.4	3
137	Plant Growth and Soybean Cyst Nematode Response to Purple Deadnettle (Lamium purpureum), Annual Ryegrass, and Soybean Combinations. Weed Science, 2009, 57, 489-493.	0.8	3
138	Corn Replant Situations: Herbicide Options and the Effect of Replanting into Partial Corn Stands. Weed Technology, 2012, 26, 432-437.	0.4	3
139	Influence of Water Hardness and Co-applied Herbicides on Saflufenacil Efficacy. Crop Management, 2012, 11, 1-8.	0.3	3
140	The Influence of Adjusting Spray Solution pH on the Efficacy of Saflufenacil. Weed Technology, 2013, 27, 445-447.	0.4	3
141	Palmer Amaranth (Amaranthus palmeri) Control with Preplant Herbicide Programs Containing Dicamba, Isoxaflutole, and 2,4â€Ð. Crop, Forage and Turfgrass Management, 2016, 2, 1-7.	0.2	3
142	Impact of Inoculum Concentration on Goss's Wilt Development in Corn and Alternative Hosts. Plant Health Progress, 2019, 20, 155-159.	0.8	3
143	Effect of cereal rye and canola on winter and summer annual weed emergence in corn. Weed Technology, 2020, 34, 787-793.	0.4	3
144	Evaluating cereal rye and crimson clover for weed suppression within buffer areas in dicamba-resistant soybean. Weed Technology, 2021, 35, 404-411.	0.4	3

#	Article	IF	CITATIONS
145	Utilizing cover crops for weed suppression within buffer areas of 2,4-D-resistant soybean. Weed Technology, 2022, 36, 118-129.	0.4	3
146	Influence of Winter Annual Weed Removal Timings on Soybean Cyst Nematode Population Density and Plant Biomass. Weed Science, 2010, 58, 381-386.	0.8	2
147	Halauxifen-methyl preplant intervals and environmental conditions in soybean. Weed Technology, 2019, 33, 680-685.	0.4	2
148	Atrazine May Overcome the Time-of-Day Effect on Liberty Efficacy. Crop Management, 2003, 2, 1-7.	0.3	2
149	Control of Glyphosate-Resistant and Glyphosate-Sensitive Giant Ragweed in Soybean with Adjuvant, Fomesafen, and Glyphosate Tank Mixtures. Crop Management, 2011, 10, 1-6.	0.3	2
150	Effects of herbicide management practices on the weed density and richness in dicamba-resistant cropping systems in Indiana. Weed Science, 2021, 69, 88-94.	0.8	1
151	Control of Palmer amaranth (Amaranthus palmeri) regrowth following failed applications of glufosinate and fomesafen. Weed Technology, 2021, 35, 464-470.	0.4	1
152	Effects of Herbicide Management Practices on the Weed Density and Richness in 2,4-D- Resistant Cropping Systems in Indiana. Weed Technology, 0, , 1-23.	0.4	1
153	Interference of Morningglories (<i>Ipomoea</i> spp.) with 'Fascination' Triploid Watermelon. Weed Science, 0, , 1-24.	0.8	1
154	Dose-response of two Jack O'Lantern pumpkin cultivars to fomesafen applied preemergence. Weed Technology, 2022, 36, 537-543.	0.4	1
155	Saflufenacil's efficacy as influenced by water hardness and co-applied herbicides. Crops & Soils, 2013, 46, 37-40.	0.1	Ο
156	Aryloxyalkanoate Dioxygenase-12 Soybean Protein Expression. Weed Science, 2015, 63, 229-234.	0.8	0
157	Cover Image, Volume 74, Issue 5. Pest Management Science, 2018, 74, i.	1.7	Ο
158	Waterhemp Control in Transgenic and Conventional Corn Varieties. Crop Management, 2004, 3, 1-10.	0.3	0
159	Influence of Spring Herbicide Applications on Winter Weed Emergence in Corn and Soybean Production Systems. Crop Management, 2012, 11, 1-9.	0.3	0